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ABSTRACT 

In [BGH] the authors show that  for a given topological dynamical sys- 

tem (X,T)  and an open cover/4 there is an invariant measure # such 

that  i nf h~,(T, P) ~_ htop(T, b/) where infimum is taken over all part i t ions 

finer than /A. We prove in this paper tha t  if # is an invariant measure 

and h~(T,P)  > 0 for each P finer than L/, then i n f h ~ ( T , P )  > 0 and 

htop(T,/A) > 0. The results are applied to study the topological analogue 

of the Kolmogorov system in ergodic theory, namely uniform positive en- 
tropy (u.p.e.) of order n (n ~_ 2) or u.p.e, of all orders. We show tha t  
for each n _~ 2 the set of all topological entropy n-tuples is the union 
of the set of entropy n-tuples for an invariant measure over all invariant 

measures. Characterizations of positive entropy, u.p.e, of order n and 
u.p.e, of all orders are obtained. 

We could answer several open questions concerning the nature of u.p.e. 

and c.p.e.. Particularly, we show that  u.p.e, of order n does not imply 

u.p.e, of order n + 1 for each n ~_ 2. Applying the methods and results 

obtained in the paper, we show that  u.p.e. (of order 2) system is weakly 

disjoint from all transitive systems, and the product of u.p.e, of order n 

(resp. of all orders) systems is again u.p.e, of order n (resp. of all orders). 

* P ro j ec t  s u p p o r t e d  by one h u n d r e d  t a l en t s  p lan  a n d  973 plan.  
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1. In t roduc t ion  

Ergodic theory and topological dynamics exhibit a remarkable parallelism. For 

example, ergodicity, weak mixing and mixing in ergodic theory can be translated 

as transitivity, topological weak mixing and topological mixing. The K-system 

in ergodic theory is an important class and it completely differs from zero en- 

tropy systems. It is well known that a measurable system is K if and only if it 

has completely positive entropy (each non-trivial factor has positive entropy) if 

and only if every partition by two non-trivial elements has positive entropy if 

and only if every partition by finite non-trivial elements has positive entropy. 

Using the first two conditions Blanchard [B1] introduces the notion of c.p.e, and 

u.p.e, in topological dynamics as an analogue of the K-system in ergodic theory, 

and shows that u.p.e, implies weak mixing and c.p.e, implies the existence of 

an invariant measure with full support. He then naturally defines the notion 

of entropy pairs and uses it to show that a u.p.e, system is disjoint from all 

minimal zero entropy systems [B2], and then with Lacroix [BL] to show that 

there is a maximal zero entropy factor associated to each topological dynamical 

system, an analogous notion of the Pinsker factor in ergodic theory. Later on, 

Glasner and Weiss [GW1] show that if a topological dynamical system admits 

a K-measure with full support then it has u.p.e., and in [B-R] the authors are 

able to define entropy pairs for a measure and show that for each invariant mea- 

sure the set of entropy pairs for a measure is contained in the set of entropy 

pairs. Blanchard, Glasner and Host [BGH] show that the converse of [B-R] is 

also valid. Characterizing the set of entropy pairs for an ergodic measure as 

the support of some measure, Glasner [G] shows that the product of two u.p.e. 

systems has u.p.e. The topic on the relative notion of c.p.e, and u.p.e, can be 

found in [GW2]. l~lrther research concerning the above results can be found in 

[KS], [LS]. Following the idea of entropy pairs one can also define complexity 

pairs [BHM] and [HY], sequence entropy pairs [HLSY] and sequence entropy 

pairs for a measure [HMY]. 

Despite great achievements, there are still many problems which remain open. 

The most vexing ones (as we understand) are: if u.p.e, of all orders is equivalent 

to u.p.e., how to define the entropy n-tuple for an invariant measure when n > 2 

(the previous definition for n = 2 is not valid for n > 2)? We will give complete 

answers to these questions in this paper. 

Looking back at the results on the relation between the two kinds of entropy 

pairs one finds that the local relation linking topological entropy for an open 

cover and metric entropy for a partition plays the central role. In [BGH] the 
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authors show that for a given topological dynamical system (X, T) and an open 

cover/4 there is an invariant measure # such that infhu(T,P ) >_ htop(T,U) 

where infimum is taken over all partitions finer than U. We prove in this paper 

that if # is an invariant measure and h u (T, P) > 0 for each partition finer than U, 

then inf hu(T, I?) > 0 and htop(T, L/) > 0. The two local variational relations are 

applied to study the topological analogue of the Kolmogorov system in ergodic 

theory, namely uniform positive entropy (u.p.e.) of order n (n >__ 2) or u.p.e. 

of all orders. Localizing the notion of u.p.e, of order n, we define topological 

entropy n-tuples (n-topo), and entropy n-tuples for an invariant measure (n- 

meas). We show that for each n _> 2 the set of all n-topo is the union of the 

set of n-meas over all invariant measures. It turns out that if a topological 

dynamical system admits an invariant K-measure with full support,  then it has 

u.p.e, of all orders. The above results generalize previous ones by many authors. 

Characterizations of u.p.e, of order n and u.p.e, of all orders connecting with a 

topologically non-trivial measurable partition (Theorem 6.7) or interpolating set 

of positive density (Theorem 8.3) or Property Pn (Theorem 7.4) or hyperspace 

(Theorem 8.4) are given (they are new even for n = 2). It turns out that u.p.e, of 

order 2 is close to Property P and u.p.e, of all orders is somehow related to the 

weak specification property. Moreover, a characterization of positive entropy 

via interpolating sets is obtained. 

We could answer several open questions concerning the nature of u.p.e, and 

c.p.e. Namely, we show that u.p.e, of order n does not imply u.p.e, of order n + 1 

for each n >_ 2 (answering a question by Host, which is restated in [GW2]), that  

there is a transitive diagonal system which does not have u.p.e. (of order 2) [B2, 

Question 1], and that there is a u.p.e. (of order 2) system having no ergodic 

measure with full support [B1, Question 2]. Applying the methods and results 

obtained in the paper, we show that a u.p.e. (of order 2) system is weakly 

disjoint from all transitive systems, and that the product of u.p.e, of order n (of 

all orders) systems is again u.p.e, of order n (of all orders). 

For the philosophical question, what is the best analogue of the K-system in 

the topological setting, we think that u.p.e, of all orders is a good candidate: 

Firstly, by the definition for each finite open cover with non-dense elements it has 

positive entropy; secondly, u.p.e, of order 2 does not imply u.p.e, of order 3; and 

finally, a system has u.p.e, of all orders if and only if there is invariant measure 

# such that for each topologically non-trivial finite partition P, h~(T, P) > 0. 

This paper is organized as follows. In section 2, we introduce some necessary 

notions and in section 3 we prove that a dynamical system admitting an invari- 
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ant K-measure with full support has in fact u.p.e, of all orders. In section 4 we 

define entropy n-tuples for a measure and show that they have lifting property 

and the set of entropy n-tuples for a measure is the support of some measure on 

the product space. Note that we heavily use Rohklin's result on the structure of 

Lebesgue spaces [R]. In section 5 we prove a theorem on the interrelation of the 

entropy of measurable covers and partitions; together with [BGH] we deepen our 

understanding of the variational principle. We remark that the previous proof 

in [B-R] is valid only for n = 2. Section 6 deals with the relation of n-topo and 

n-meas. In section 7 and section 8 we give other characterizations of u.p.e, of 

order n and u.p.e, of all orders, and use the results to prove that u.p.e, of order 

2 system is weakly disjoint from all transitive systems. In section 9 we give the 

examples. 

We would like to thank the referee of the paper for the careful reading. The 

main results of the paper were obtained several years ago. While modifying it, 

some ideas of the paper have been applied to obtain some other results in [HMY], 

[HMPY] and [HSY]. Particularly, it is shown in [HSY] that a minimal topological 

system is strongly mixing. It is worth mentioning that just recently Glasner and 

Weiss [GW3] showed that infh~(T,P) <_ htop(T,U) for each invariant measure 

#. 

2. P re l imina ry  

Let (Y,/), u, T) be a measure-theoretic dynamical system (MDS, for short) and 

P~ be its Pinsker a-algebra. For a finite measurable partition F, let s  = 

V+__~ T-iP,  and H,(FIA  ) be the conditional entropy of ]P with respect to a a- 

algebra .4. As usual, 1PVT-1FV .. .  VT-('~-I)P is denoted by F~-I(T) or simply 

Recall that 

lim -1Hv(pS-1 ) = H~,(PIP- ) = H,(PIP- V P.) 
n--+Too ?2 

= 

and 
lim T - k p  - V P~ = P,,. 

k--++oo 

A topological  dynamica l  sys t em (TDS, for short) is a pair (X, T), where 

X is a compact metric space and T is a homeomorphism of X to itself. Given a 

finite cover gg of X one defines the combinator ia l  en t ropy  of/ / /by the usual 

formula 

hc(T,14) = lim 1 H ( I , I V T - I ( N )  V . . .  V T - ( n - 1 ) ( U ) ) ;  
n--++oo n 
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the limit exists since H(/4) = loginf #(/4r) is sub-additive, where the infimum 

is taken over all subcovers/4r of /4  and # denotes the cardinality. Note that  

he(T,/4) coincides with htop(T,/4) when/4 is a finite o p e n  cover of X. By/4  < l;, 

we mean that the cover/4 is coarser than the cover 12 and the same notation 

will be used for partitions as well. When/4  _< 1;, we have he(T,~4) <_ hc(T, 1;). 
Since a finite partition F of X is also a cover, it has also combinatorial entropy. 

In this case one has 

hc( T, IP ) = n-~+~lim -nl log [ ~-VIT-i~ ' 
i----O 

n--1 - i  n--1 where I Vi=o T I P  I is the number of non-empty elements in V~=o T-~F. Hence 

for a Borel invariant probability measure #, h~(T, IP) <_ he(T, ]~). 

The notion of topological entropy pairs is introduced in [B2]. Here we have 

(see also [GW1]) 

Definition 2.1: Let (X, T) be a TDS and X (n) = X x . . .  x X (n times) with 

x n X(,~) t opo log i ca l  e n t r o p y  n- tuple(n- topo ,  n_> 2. Ann- tup le  ( i)1 E i s a  
for short) if at least two of the points {xi}in_=l are different and if whenever Uj 

are closed mutually disjoint neighborhoods of distinct points xj,  the open cover 

/4 = {U~: 1 _< j _< n} has positive topological entropy, i.e. htop(T,/4) > 0. 

n Let n >_ 2, X (n) = X x . . .  x X (n times) and (xi)i=l E X (n). Let U = 

{U1, U2 . . . .  , Un} be a finite cover of X. We call/4 an a d m i s s i b l e  cover  with 

respect to (xi)in___l if for each Ui (1 < i < k) there exists xj, (1 <__ ji <_ n) such 

that xj~ is not in the closure of Ui. 

Remark 2.2: It is easy to see that an n-tuple (xi)[ C X (n) is a topological 
X n entropy n-tuple if and only if at least two of the points { i}i=l are different 

and for any admissible finite open cover/4 with respect to (xi)~ ~ E X (n) one has 

htop(T,/4 ) > 0. 

Definition 2.3: Let (X, T) be a TDS. (X, T) has u n i f o r m  pos i t i ve  e n t r o p y  

of  o r d e r  n (u.p.e. of order n, for short), if for every point (xi)~ �9 X (n) not on 

the diagonal A n ( X )  = {(x)[: x �9 X} is n-topo. We say (X,T)  has u.p.e, of all 

orders or topo-K if it has u.p.e, of order n for every n >_ 2. 

Clearly, a topological entropy 2-tuple is just a topological entropy pair and 

u.p.e, of order 2 is just  u.p.e, defined in [B1]. 

Remark 2.3: It is easy to see that  
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(1) (X, T) has u.p.e, of order n if and only if any cover of X by n non-dense 

open sets has positive topological entropy. 

(2) (X, T) is u.p.e, of all orders if and only if any cover of X by finitely many 

non-dense open sets has positive topological entropy. 

For n > 2 denote by En (X, T) the set of all n-topo, by E~, (X, T) its closure. 

The proofs of the following results are similar to that of the corresponding results 

in [B2]. 

PROPOSITION 2.4: Let ( X , T )  be a TDS. 

(a) I f U  = { U 1 , . . . ,  Un} is an open cover of X with h t o p ( T , U )  > 0, then there 

are n points xi E U [ for 1 < i < n such that (xi)'~ is n-topo. 

(b) E'n(X, T) is a nonempty dosed T(n)-invariant subset of X (,~) containing 

only n-topo and points of A~( X ). 

(c) Let zr: (Y, S) ~, (X, T) be a factor map of TDS. 

(1) If  (xi)'( E En(X,  T), then there exist y~ E Y,  1 < i < n, such that 

7r(yi) = xi and (Yi)'~ E E,~(Y, S). 

(2) Conversely, if(yi)~ E E~(Y, S) and (r(yi))'~ q[ A~(Y) ,  then (rr(yi))l ~ 

belongs to E,~ ( X ,  T). 

(d) Suppose iV is a dosed T-invariant subset o f (X ,  T). Then if  ( xi )'~ is n-topo 

of (W,T[w) ,  it is also n-topo of (X ,T ) .  

3. K-measure  with full support implies u.p.e, of  all orders 

In this section we shall show that if (X, T) is a TDS and admits an invariant 

K-measure with full support, then it has u.p.e, of all orders. Under the same 

assumption Glasner and Weiss [GW1] show that it has u.p.e, of order 2, and 

here by using a combinatorial result we avoid a complicated calculation and can 

prove that in fact it has u.p.e, of all orders. The result in this section indeed 

can be obtained from results in the later sections and we include the proof here 

to illustrate the basic ideas (in fact it is the starting point of the research). To 

do so, we need some laminas. The first one is simple. 

LE/vlMA 3.1: Let X be a compact metric space and p be a non-atomic probabil- 

i ty measure on the Borel a-algebra B(X)  of X .  I f  B E B(X)  with p(B) >_ r > O, 

then for any O <_ 8 <_ r there exists a Borel set Be such that Bo C B and 

 (Bo) = o. 

The second one is well known; see, for example, [BGH]. 
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LEMMA 3.2: Let (Y, D, u, T) be a MDS and Pv be its Pinsker a-algebra. Then 
for any finite measurable partition P of Y,  limn~+c~ h, (T  n, P) = H.(PIP~ ). 

Let (X, T) be a TDS and C be a subset of X. If c~ = {A1, A2 , . . . ,  An} is a 

finite cover of C and k < n, then 

kc~ = {Ai, U Ai~ U. . .  U Aik : 1 <_ it < i2 < . "  < ik < n} 

is again a finite cover of C. Let N(a, C) be the minimum number of sets in any 

finite subcover of a covering C. Note that  a V T - l a  V. . .  V T-(n-1)a is denoted 

by a~ -1 (T) or simply a~ -1. We have (see IX]) 

LEMMA 3.3: 

(1) N(a, C) <_ kg(ka ,  C). 
(2) T-m(ka)  = kT-m(a),  for m e Z. 

(3) If  ao, . . . ,  hi-1 are covers of C, then kao V kal V . . .  V kaz-1 is a subcover 

ofkt(cto V al V . . .  V hi- l) ,  where k <_ mino<i<l-1 #(oh), and 

ktN(kao V kal V . . .  V kal - l ,C)  > klN(kt(ao V c~1 V . . .  V aL_I),C) 

> N(ao va l  V . . . va l_ l ,C ) .  

(4) Ira is a finite cover of X and k <_ # (a ) ,  then he(T, ka) >_ he(T, a) - l o g k .  

Proof: (1)-(3) are easy to prove, and (4) can be proved using (1)-(3). | 

With the above preparation we can now show the main result of the section. 

Note that  we use M(X,  T) to denote the set of all Borel invariant probability 

measures under T. 

THEOREM 3.4: Let (X, T) be a TDS. Suppose there exists # E M(X,  T) which 
is a K-measure with full support; then (X, T) has u.p.e, of a11 orders. 

Proof." Since (X, T, #) is a measure-theoretic K-system, # is non-atomic. For 

any n > 2 and n different points xl,  x 2 , . . . ,  xn, let Ui be closed mutually disjoint 

neighborhoods of xi. Put  r = minl<i<n{#(Ui)}. Since Supp(#) = X, we have 

r > 0. Choose k E N such that  0 < 1/k < r and k _> n + l .  By Lemma 3.1, there 

exists a measurable partition P = {Ba, B 2 , . . . ,  Bk } with Bi C Ui, i = 1 , 2 , . . . ,  n 

and # ( B j ) =  1/k, for j = 1 , 2 , . . . , k .  

Let P ,  be the Pinsker a-algebra of (X, T, #). As # is a K-measure, P ,  = 

{X,0}. Since 

lim hu(Tn, l?) = Ht,(]P]P~) = Hu(P) ---logk 
n--++c~ 
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(by Lemma 3.2 and P~ = {X, 0}), there exists l C N such that h~(Tl,l~) > 
log(k - 1). 

Let U = {U~,U~,.. . ,U c} and V = {B~,B~,...,B~.}. It is easy to see that  

V _</4 and V = {~]i~1 Bi, (.Ji~2 Bi , . . . ,  ~Ji#k Bi} = ( k -  1)I?. 
Therefore, 

htop (T, U) >__ 

> 

_> 

~htop(Tl,U) ~- ~hc(Tl,U) ~ ~hc(Tl,~) 

~(hc(Tt,P) - log(k  - 1)) (by Lemma 3.3 (4)) 

l ( h , ( T I , P ) - l o g  ( k -  1)) > 0. 
l 

Hence T has u.p.e, of all orders. | 

Using Theorem 3.4 and Proposition 2.4, and following the proof of the 

corresponding results in [GW1], we have 

THEOREM 3.5: Given an arbitrary ergodic MDS (Y,~),u,T) with positive 
entropy, there exists a strictly ergodic u.p.e, of all orders TDS (X, T) with 
an invariant measllre # such that the systems (Y, 7), u, T) and (X,/3, #, T) are 

measure-theoretically isomorphic. 

4. E n t r op y  n- tuples  for an invariant measure  

Let (X,T) be a TDS, # C M(X,T)  and 13 = B(X) be the Borel a-algebra of 

X. In [B-R] the authors introduce the notion of entropy pairs for a measure 

and the notion cannot be directly generalized for n-tuples when n > 2. In this 

section we will give a definition of entropy n-tuples for a measure which is the 

same as the previous notion when n = 2. Then we show that  the set of entropy 

n-tuples for a measure is the support of the disintegration of the measure over 

the Pinsker factor (see Glasner [G]). Finally, we show that  entropy n-tuples for 

a measure have the lifting property. 

Let B,  be the completion of/3 under #. A C X is a / t - s e t  if A C B,  and 

A C X is a Borel  set if A E/3. Now we define entropy n-tuples for It. 

Definition 4.1: Let n > 2 and (xi)'~ E X (~) \ An(X). By an admissible 

part i t ion  ]P with respect to (xi)'~ we mean 

1. s is a finite Borel partition of X and 

2. if ]? = {A1, . . . ,Ak},  then for each Ai (1 _< i _< k) there exists xjl 
(1 _< ji _< n) such that  Xji ~_ cl(Ai). 



Vol. 151, 2006 A L O C A L  V A R I A T I O N A L  R E L A T I O N  AND A P P L I C A T I O N S  245 

(xi)~ is an entropy n-tuple for p, if for any adlnissible parti t ion ]? with respect 

to (xi)~ we have h , ( T , F )  > 0. 

Remark 4.2: In the definition of an admissible partition, we may replace (1) 

by (1)': F is a finite/t-set partition of X. 

Denote by E~(X,T)  the set of all entropy n-tuples for # (n _> 2). In the 

following, we investigate the structure of E~n(X, T). 
Let (}, 7), v, T) be a MDS and P~ be its Pinsker a-algebra. Define a measure 

A,~(v) on (y(n), 7)(n), TOO) by letting 

i=1 i = I  

where 7)(,0 = 7) x . . .  • 7) (n times), T ('0 = T x . . .  • T (n times) and Ai E 7), 

i = 1, 2 , . . .  ,n. To get a characterization of E~(X,T)  we need 

LEMMA 4.3: Let (Y,7),v,T) be a MDS and lg = {U~,U2,... ,U,~} be a mea- 

surable cover of X.  Then An(v)(I-Ln__l U[) > 0 if and only if for any finite 

measurable (or n-set) partition ~, finer than U as a cover, one has h, (T, IP) > O. 

Proof'. Assume that  for any finite measurable (or n-set) partit ion P, finer than 

U as a cover, one has h~(T, P) > 0 and A,~(v)(I'-I'i~ 1 U c) = O. 

Let Ci = {x E X :  E(1u~[P~)(x) > 0} E P, .  As 

0 = f E( lu :  IP~)(x)dv = v(U c A (X \ Ci)), 
dx \c~ 

we h a v e v ( U  c \ C i )  = 0, 1 < i < n. Pu t  Di = C i U ( U  c \ C i ) ;  then D~ E P~ 

and D e C Ui, 1 < i < n. For any s = (s(1), . . . ,s(n))  e {0,1} '~, let Ds = 

i=l Di(s(i)), where Di(0) Di and Di(1) X \ Di. Set D~ = ( Q n  I Di) ;7 
j - 1  (Uj \ Uk=l Uk) for j = 1 , 2 , . . . , n .  

Consider a measurable partition 

? = { D s : s e { 0 , 1 }  n and s r  

For any s E {0, 1} n with s # ( 0 , 0 , . . . , 0 ) ,  one has s(i) = 1 for some 1 < i < n. 

Then D8 C D r C Ui and clearly, Da0 C Uj, j = 1, 2 , . . . ,  n. Thus ? is finer than 

/4, and h~(T, ~) > O. 

Oil the other hand, since A,~(v)(I-lin__l U[) = 0, it is easy to show that  

n = v(Ni= 1 0. one Do,Do,. . . ,D'~ E P,. It is clear v(~i= 1 Di) n Ci) = Thus h ~  I 2 
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that  Ds E P, for s E {0, 1 }n, since Di,  D 2 , . . . ,  D,~ E P, .  As each element of ]P 

belongs to P, ,  one gets h,(T, P) = 0, a contradiction. 

Now assume )%(it)(II'~=lU c) > 0. For any finite measurable partition lid finer 

t h a n / / a s  a cover, without loss of generality, we assume that  

~= {A1,A2,...,An} 

with Ai C U~, i = 1 , 2 , . . . , n .  

Note that  

71. 71 

/X H E(1x\ Ai IPv)(x)dv(x)>-- IX H E(1Uf IPv)(x)dv(x) 
i=1 i=1 

= A~(u > O. 

Therefore, Aj ~. P, for every 1 < j < n. This implies h,(T, P) > 0. II 

Now we show a characterization of E~(X, T) for any n _> 2 and we remark 

that  the case n = 2 is proved in [G]. 

THEOREM 4.4: Let (X,T) be a TDS and p E M(X,T). 
Supp(An(it)) \ An, where n > 2. 

Then E~(X,T) = 

Proof." Let (xi)~ E E~n(X,T). To show (xi)~ E Supp()%(lt)) \ An, it remains 

to prove that for any neighborhood Ui of xi, )%(p)(1-I~l ui) > 0. 

Set u = {Uf, u ~ , . . . ,  UC}. Without loss of generality, we assume that  L/is a 

measurable cover of X (if needed, replace Ui by a smaller neighborhood). It is 

clear that  for rely finite measurable partition F, finer than / / / a s  a (:over, P is an 

admissible partition with respect to (xi)~. Therefore h,(T, ~) > 0. By Lemma 
A n 4.3, n(/~)(l-li=l Ui) > O. 

Now assulne (xi)~ ~ E Supp(An(p)) \ An. We will show that  hi,(T,~ ) > 0 for 

any admissible partition IP = {Am, A2,..., Ak} with respect to (xi)~. 

Since P is an admissible partition with respect to (x~)~ ~, there exists neigh- 

borhood Ui ofxi such that  for each i E {1 ,2 , . . . , k}  we find ji E {1 ,2 , . . . , n}  

with Ai C U;~. That  is, ]P is finer t han /7  = {U~, U~, . . . ,  U c} as a cover. As 
A n n(p)(YL=l Ui) > 0, one has h,(T, ~) > 0 by Lemma 4.3. II 

From now on we proceed to show that  the lifting property is valid for entropy 

tuples for a measure (Theorem 4.10). To do so we need 
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LEMMA 4.5: Let a,/3 be finite measurable partitions of a MDS O; D, v, T). 
Then h~(T,a) <_ h~(T,/3) + H~(al/3 V P~). 

Proob Let an H~" , , - 1 , . n - i  V P~). First we show that  an is sub-additive. = (ao IPo 
In fact 

an+m = H . ( ( a  V/3)~+m-I IP ) - H .  (/30 ~+m-1 [P.) 

= H . ( ( a  V/3)~-1  V T-n(a  V/3)~)n-11P~) - H~ (/3~ -1 v T-~/3~ -1 [P~) 

=H~(T-n(a V/3)~n-1 [p~) + H~((a V/3)o"-1 iT-n  (a V/3)om-1 V P~) 

- H~(/3~ -~ V T-'~3y-'IP.) 
_ < H ~ ( T - " ( a  V / 3 )~ - I [P~)  + H ~ ( ( a  V /3)on-1 iT-n/30m-1 V P,) 

- H,,(/3~ - t  v T-'~/3~-'IP,,) 
= H v ( T - n ( a  V fl)'o ''-11P,,) - Hv( r -n /3~ n- l IP,,)  

Rn--i --n m--I + H~(a~-' V ~'o V T /3o IP~) - H~(/3~-' v T-n/3'~-'IP~) 
n-1 n - i  r - n  m-1  V T /30 am =am+H~(ao [/30 V P . )  < +a,~. 

Since an is sub-additive, lim~__++oo(an/n) = infn>l (an~n). Therefore, 

h.(T, a) - h~(T,/3) <_ h~(T, a V fl) - h.(T,/3) 
H~((a n-1 v 3)o IP~) - H~(/3~ -IIP~) 

= lira 
n--++oo n 

lira an a,~ . . . .  inf - -  < H~(a]f l  V P . ) .  | 
n-++oo 7~ n > l  77, - -  

To simplify the notation we now introduce 

Definition: Let (Y ,D,v ,T)  be a MDS and U = {UI,U2, . . .  ,Un} be a measur- 

able cover of Y. Set 

h.(T,U) := inf{h~(T, P) :Fis a finite measurable parti t ion finer than t / ) .  

It can be considered as the measure entropy of cover U with respect to v. 

The following theorem and Theorem 5.7 are crucial for our paper and will be 

usefill in other settings as well. 

THEOREM 4.6: Let (Y,/P,v,T) be a MDS andLt = {UI,U2,.. .  ,Un} be a mea- 

surable cover of Y with n >_ 2. Ifh~(T, I?) > 0 for every finite measurable (n-set) 

partition P, finer than Ll as a cover, then h.(T,l~) > O. 
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Proof: By Lemma 4.3, M(u)(1-In=, U~) > 0, i.e., fx  I-Ii~, E(1u~ IG)du > O. 
Hence, there is a natural number M such that u(D) > 0, where 

D = {x E X :  min E(lt]~ IP.)(x) > l / M } .  
I < i K n  ~ -- 

For any s = (s (1) , . . . ,  s(n)) E {0, 1} n, set As = Ninl Ui(s(i)), where Ui(O) = 
Ui and Ui(1) = X \ Ui, and a = { A s : s  e {0,1}"}. We have 

CLAIM: H, (a l f l  V P.)  _< H~(aiP.)  - ~ log(-~_l) , tot" any finite measurable 
partition fi whi& is finer than lg as a cover. 

Proof of Claim: Without loss of generality, assume fl = { B1, B2, . . . , Bn } with 

Bi C Ui, i = 1 , 2 , . . . , n .  
- x l o g x  if x > 0 ,  

Let f (x )= 0 if x = 0 .  
Then 

H . ( a l f l  v P~) = H , ( a  v f l i P , , )  - H , ( f l l P ~ )  
n 

= ix E E E(lte~ P "[E(IA'~ d" 
' ~"'\  E(1B, IP,.) (4.6.1) ~e{o,ly' i=l . 

P " " \  ~r[E(1A"n~IP")) du' E(lu  T-~ = Z ix  ~ '  E(1B,, 
s e {0 , 1}  '< i,s(i)=O 

where i, s(i) = 0 means "for all i with s(i) = 0". The last equality comes from 

the fact that  for any s E {0, 1} n and 1 < i < n if s(i) = 1, then As n Bi -= 

and the fact that  
E(1A., riB, IP . )  , , 

 GG7 =- o. 

Put  cs = ~k,s(k)=o E(1Bk IP~). As f is concave, 

s < o , , r ,  ,s(,)  o . ,  . _- c. E- E.,iW.i ) d , ,  

= ~ Sxcs'f(Ei's(i)=oE(1a'nB']P'))du 
.~{o,t)" cs 

se{o,1}" 

=r(fx se{O,1 }" 

= H . ( a l P ~ )  - 

E(1A~ ]Pu) . .  s( ) '-  

f(E(1A. IP~))du- i x  E(l&lP~)l~ 

E i x  E(1A. ]P.)log(1/c~)du. 
so{o,1}" 
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Note that if s(i) = 1 (1 < i < n) then Ek,4k)=oE(1B~ [P~) _< E(lx\B, IP,), as 3 

is a partition. Putting bi = E(lx\B~ IP,), i = 1,...  ,n, then we have 

1 
~_, fxE(1A~[P~,)log ( - du 

i=1 s , s (  ' )= l  

1 E(1ug IP.) log dv > log dv 
n i = l "  i - -  = 

= nM log du > log ~ d u  
[[i=I i - -M ~i=t bi 

v(D) ( n ) 
= M  log ~--2~_1 , 

a s  

and 

Hence 

bl + . . .  + bu) n >_ bl"'" b~, 
n 

n ?~ n 

Z bi-- E E E(1B, [P") = ( n -  1) E E(1., I P . ) =  n - 1. 
i=1 i=1 j r  i=1 

u(D) l / n \ H.(al~ V P.) < H.(aIP. ) - - - ~  o g / n ~ -  1)" 

This ends the proof of claim. 

Put 
u(D) log ( n ) 

e -  M ~-2--/_1 >0.  

Since l i m . ~ + ~  h.(T m, a) = H.(alP.), there exists I > 0 such that h.(T t, a) >_ 
H.(alP. ) - e/2. Now for any finite measurable partition r finer than 5/as a 
cover, one has 

1 t 1 e 
h.(T,3) >_ -[h.(T ,3) >_ _ ( h ' ( T l ' a ) -  H.(al3V P.)) > ~ ,  

by Lemma 4.5. This shows that h.(T,U) >_ e/21. | 

An immediate consequence is 

COROLLARY 4.7: Let (Y,D,u,T) be a MDS and U = {U1,U2, . . . .  U~} be a 
measurable cover of Y. Then h~(T,N) > 0 if and only if An(u)(~I~= ~ U~) > O. 

Proof: It follows from Lemma 4.3 and Lemma 4.6. l 
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LEMMA 4.8: Let (X, T) be a TDS, # C M(X, T) and U be a finite Borel cover 
of X. If # = fn # j m ( w )  is the ergodic decomposition of p, then h.(T, U) = 

fa 

Proof'. Let U = {U1,U2,...,UN}. Define 

N(P)  = {•:/3 = {Bi C Ui: 1 < i < N} is Borel partit ion of X}. 

As X is a compact metric space, there exists a countable family {]P~ E/ , / (P)  : 

i E N} such that  it is L 1 ( ,)-dense in U(P)  for each probability measure u on 

X.  In fact, if {Vi} is a base of X and A is the algebra generated by {V/} U N, 

then IPi can be taken such that  its j - th  element is in .d and is contained in Uj, 
1 _< j < N. Clearly, for each u �9 M(X, T), h~ (T, N) = infie• h.(T, l?i). 

Let e > 0. As h.~ (T,U) = infieN h.~ (T, IPi) for each p~ �9 f~, there exists, 

therefore, a parti t ion {f~n}neIcN of f~ (modm) with m(f~n) > 0 for every n �9 I 

such that  h.~ (T, lPn) < h.~ (T, U) + e if p~ �9 f~n. 
1 For n �9 I write t,~ = m(f~n) and pn = K f~.~ Itwdm(w)" One has 

1s 
h•,. (T, ~n) : ~n h.~ (T, ~n )dm(w)  

n 

< -- h.~(T,U)dm(w) + e. 
- -  t ? ~  n 

The measures {pn} are mutually singular, i.e., there exist Borel subsets 

{Xn}neI such that,  for each n, k �9 I, #n(X,~) = I and lt~(Xk) = 0 for k r n. We 

can assume that  {Xn}~eI is a partit ion of X. Let l?n = {B2 c U~: 1 < i < N }  

and Bi = U n e l ( X n  n B n ) .  Then F = {B1,B2,. . . ,BN} �9 U(P)  and I? = e,~ 

(mod/~n) for each n �9 I.  We have 

h.(T,l?) = E tnh"n(T'lP)= E tnh.n(T'l?n) 
n n 

<_/a hi, ~ (T, U)dm(w) + e. 

Hence h.(T,U) < fa (T,U)dm(w) + e and thus 

h . ( r ,u )  <_ fa h.~ (T,H)dm(w). 

On the other hand, 

h~(T, LI) = inf h~(T, ?i) = inf f h~  (T, ?i)dm(w) 
iEN iENJfl  

> [ (T, bl)dm(w). 
Jn 
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This shows that h, (T, bl) = f~ h,~ (T, gt)dm(w). | 

With the help of Corollary 4.7 and Lemma 4.8 we now can show Theorem 

4.9, which discloses the relation of entropy tuples for a measure and entropy 

tuples for ergodic measures in its ergodic decomposition, generalizing Theorem 

4 of [BGH]. 

THEOREM 4.9: Let (X, T) be a TDS, # E M(X,  T) and # = f~ #wdm(w) be its 
ergodic decomposition. 

(i) For m-almost every w, E~n~(X,T) C E~n(X,T), where n _> 2. 

(ii) If (xi)*~ E E~(X, T), then for every neighborhood V of (xi)'~, 

v n (X, T) # O} > o. 

Thus for an appropriate choice of 12, 

cl(U{EUn=(X,T): w e ~}) \ An(X) = E~n(X,T). 

Proof: (i) Let Ui, i = 1 , 2 , . . . , n  be open subsets of X with ~ in  1 cl(Ui) = 

0 and (1-In=lcl(Ui)) f3 E~(X,T) = ~. As E~n(X,T) = SuppAn(#) \ An(X),  
An(P)(l-Ln=l cl(U/)) = 0. By Corollary 4.7, 

h,(T, gt) = 0, where/4 = {U~,U~, . . . ,UC) .  

As fa h ~  (T, Lt)dm(w) = h~(T, gl) = 0, h,~ (T,L/) = 0 for m-a.e.w. By Corol- 

lary 4.7, A~(#~)(l-I~=l (Ui)) = 0 for m-a.e.w. Hence (1-Iin=l Ui) A E~n ~ (X, T) = 0 
for m-a.e.w. 

Since E~n(X, T) t_J An(X)  is closed in X (n), its complement can be written as 
n a countable union of sets of the form 1-Ii=1 Ui, where Ui, i = 1, 2 , . . . ,  n are open 

subsets with Nin__l cl(U/) = 0. By definition, E~ ~ (X, T) A A~(X)  = 0 for all w, 

and we conclude that for m-a.e, w, E~n~(X,T ) A (E~n(X,T)) c = O. 
(ii) Without  loss of generality, we assume V = l-Ii~=l Ai, with Ai a closed 

neighborhood of xi and Ni~l Ai = ~. 
c A As An(#)(I-[~___l A/) > 0, one has h,(T, {A1, A2, . . .  , ~}) > 0. Since 

c c c c A C h ~  (T, {A 1, A2,. . . ,  A~})dm(w) = h,(T, {A1, A2 , . . . ,  ~}) > 0, 

there exists ft ~ C f~ with m(f~') > 0 such that when w E f~, 

n 

h~,(T,{A~,A~,. . .  ,A~}) > 0, i.e., A~(tt~)(II Ai ) > O. 
i----1 
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Clearly, w E ~', (Hn=lAi) M E~n~(X,T ) # 0. This shows 

m ( { w : V n E ~ ( X , T ) # O } ) > O .  | 

The special case n = 2 of the following theorem is proved in [BGH] and now 

we can show 

THEOREM 4.10: Let ~: (X, T) -+ (Y, S) be a factor map of TDS, It E M(X,  T), 
and v be its image under 7c. 

(1) For every (xi)~ E E~n(X,T) let 7~(xi) = Yi, i = 1 , 2 , . . . , n .  If (Yi)'~ ~- 
An(Y) ,  then (yi)~ E E~(Y,S). 

(2) For every (Yi)~ E E~(Y,S), thereexists (xi)~ E E~n(X,T) with 7c(xi) = Yi, 
i = 1 , 2 , . . . , n .  

Proo~ (1) follows directly from the definition. Using Theorem 4.9 and Theorem 

4.4, (2) follows from the proof of Theorem 5 in [BGH]. | 

5. E n t r o p y  of  m e a s u r a b l e  covers and  pa r t i t i ons  

In this section, we prove that  for a MDS (Y, 73, v, T), if U is a finite measurable 

cover of Y such that  hv(T, bl) > 0, then hc(T,U) > 0. In section 6 we will apply 

this result to show that  each n-meas is an n-topo. First, we discuss some basic 

properties of the Pinsker factor. 

We say (]I, 73, v, T) is a L e b e s g u e  sy s t em,  if (Y, 73, v) is a Lebesgue space 

and T is an invertible measure-preserving mapping on it. Here, we require that  

73 is complete under v, i.e., if A E 73 with v(A) = 0 then for any C C A one has 

C E / ) .  

Let (]I,/), v, T) be a Lebesgue system, Pv be its Pinsker a-algebra. Let 

7r: (Y, 73, v, T) -+ (Z, Z, r h T) he the measure-theoretical Pinsker factor of 

(Y, 73, v, T), where we require that  (Z, Z,  r/, T) is also a Lebesgue system. 

Let v = f z  vzd~(z) be the disintegration of v over (Z,7/) (see [F] and [R]). It 

is known that  for ~-a.e. z E Z, vz(Tr-l(z)) = 1. 

Recall that  (see section 4) for a MDS (Y,73, v,T), An(v) is a measure on 

(y(n) 73(n), T(n)) with An(v)(YIinl Ai) = fy  Kiln1E(1A, IP,)dv(y) for any Ai E 
73, i = 1, 2 , . . . ,  n. Note that  for a Lebesgue system (Y, 73, v, T), E(1A IP.)(y) = 

vr(y) (A) for A E 73 and v-a.e, y E Y. Moreover, we have 

,. x z  v Xz...~ x z  ~ = fz'VZ x v~...~ x v~d~(z). An(V) 
n n 
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Given 1 E N, let S = T t, and F be a finite measurable partition of Y. Define 

a function h.(S, F, z) 71-a.e. on Z by the formula 

h.(S,F,z): = lim H..(FIS-'W), 
n-+-{-oo 

where F n = n-1 Vi=0 s - i F .  It is not hard to see that  h~(S, F, z) is a measurable 

function on Z and h.(S, F, z) < log #(F) .  Moreover, r] is invariant under S. We 

have 

LEMMA 5.1: fzh.(S,F,z)d~(z) = h.(S,F). 

Proof: Using monotone convergence theorem and noting that  limn-++~ an -'- a 
implies limn-~+~ ~ ~in___l a i  = a, we have 

f z  h~'(S'F'z)&l(z)= fz  ,~+oolim Hv~(FIS-1Fn)&/(z) 

: lira f n~,~ (FIS-'F~)d~(z) 
n-~+~ Jz 

(5.1) = lira f H..(F n+l) - H..(S-1Fn)drl(z) 
n--++oo JZ  

= lira f gu,~(~ n+l) - H..(Pn)d~l(z) 
n~+oo Jz 

�9 1 n . 

= ,~l~moo n fz  H.. (]F)do(z ) 

For A e F n, since E(1AIP.)(y) = .~(y)(A) for u-a.e, y E Y, we have 

g.(F'qP.) - ~ [ --E(1A IG)(y)log(E(1A IP.)(y))du(y) 
JY 

= E /z  -,z(g)log(uz(A))&l(z) 
AEP" 

= / z  H~. (Fn)d,l(z). 

Since P .  is also the Pinsker a-algebra of (Y, v, S), (5.1) equals 

lim 1H.(FnIP.) = h.(S,F). 
n--++oo ~t 

This ends the proof of Lemma 5.1�9 | 

The following lemma is from [R] (lemma 3 ~ in w No. 2). 
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LEMMA 5.2: Suppose vz is non-atomic for ~l-a.e. z C Z. I f  B is a measurable 

set of  Y with vz(B) _> r > 0 for ~-a.e. z E Z, then for any 0 < 0 < r there exists 

a measurable set Bo such that Bo C B and v~(Bo) = 0 for 7]-a.e. z E Z. 

With the help of Lemma 5.2 we prove a lemma which is important in the 

proof of Theorem 5.5 and could be useful in other settings. 

LEMMA 5.3: Suppose vz is non-atomic for t/-a.e, z E Z. I f  Ui E 7?, i = 

1, 2 , . . . ,  n with )~,~(U1 x U2 x . . .  x Un) > O, then there exist a measurable set 

A C Z with ~](A) > O, a positive integer r > n and a measurable partition 

= { B ~ , B 2 , . . . , B ~ }  of Y such that 7 r - l ( A ) n B i  C Ui, i = 1 , 2 , . . . , n  and 

u~(Bj) = l / r ,  j = 1 ,2 , . . .  , r  for r/-a.e, z e Z. 

Proof'. P u t  Ci = {z E Z : pz(Ui) > 0}, i = 1 , 2 , . . . , n .  S ince  

n 

one has ,7(N'& q) > 0. 

We use induction to construct Bi and first we do so for BI. Let A t '~ = ni=l Ci; 
then A ~ is a measurable set of Z and rl(A') > 0. It is easy to see that there exist 

a positive integer r > n and a measurable set A C A t such that rl(A ) > 0 and 

uz(U,) >_ n / r  for any z E A, i = 1 , 2 , . . . , n .  Setting 

Dl = 7r- l (Z \ A) U (Ir-l(A) n gl ) ,  

we have uz(D1) > n / r  for 7j-a.e. z E Z. By Lemma 5.2, there exists a 

measurable set B1 C Dt such that  v~(B1) = 1/7' for ~j-a.e. z E Z, and 

B1 n rr- l (A) C D1 n rr- l (A) C U1. 

Suppose measurable sets Bk have been constructed (1 _< k _ r), and Bk 

satisfies 

(1)k f o r l  < i < k - l , B k n B i = O ;  

(2)k vz(Bk) = 1/ r  for r/-a.e, z e Z; 

(3)k Bk n 7r-l(A) C Uk (when k > n, we set Uk = Y). 

If k = r, we are done. If k < r, we set 

( r r - l (Z  \ A) U (~r-l(A) N Uk+l)) \ U~----1 Bi if k + 1 _< n, 
Dk+l = Y \ u ik l  Bi if k + 1 > n. 

It is not hard to see that  uz(Dk+l) ~ 1/ r  for 7]-a.e. z E Z. By Lemma 5.2, 

we can find measurable sets Bk+l C Dk+l such that  uz(Bk+l) = 1/r for '~]-a.e. 

z E Z. Obviously, Bk+l satisfies (1)k+l, (2)~+1, (3)k+l. 
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By the above inductive construction, one gets a partition P = {B1, B2, �9  B~} 

of Y, and P satisfies vz(Bk) = 1/r, k = 1 , 2 , . . . , r  for ~-a.e. z E Z and 

B~MT~-I(A) cUi ,  i = I , . . . , n .  | 

The following lemma is well known. 

LEMMA 5.4: Let (Y, 7), v, T) be a Lebesgue system, ~: (Y, 7) , v, T) --+ ( Z, Z, ~, T) 

be the Pinsker factor of (Y, 1), v, T) and f z  vzd~ = v be the disintegration of v 
over (Z,y).  If  v is an ergodic measure with h,(T) > O, then we have 

(1) Vz is non-atomic for ~-a.e. z E Z; 
(2) 7r: (Y,~D,v,T) --+ (Z ,Z ,~ ,T)  is a weakly mixing extension and A~(v) is 

ergodic. 

With the above preparation we can show Theorem 5.5. In fact, Theorem 5.5 

is a consequence of Theorem 5.7. The proof presented here has some important 

by-products which will be used in later sections. 

THEOREM 5.5: Let (X,T) be a TDS and # E M(X ,T ) .  I fU  is a Bore1 cover 

of X such that h~(T,/4) > 0, then hc(T,U) > O. 

Proof: By Lemma 4.8, we may assume that  # is ergodic. Let B~ be the com- 

pletion of the Borel a-algebra B(X) under #. It is well known that  (X, Bz, #, T) 

is a Lebesgue system. Let Pz be the Pinsker a-algebra of (X, Bt , ,# ,T ). Let 

~: (X,B, , t t ,  T) -~ (Z ,Z ,~ ,T)  be the Pinsker factor of ( X , B , , # , T )  and # = 

f z  #~dT1 be the disintegration of tt over (Z, ~). By Lemma 5.4, #z is non-atomic 

for 7j-a.e. z E Z. 

Let It = {U~,U~,...,UC}. By Corollary 4.7, An(#)(1-]i~l Ui) > 0. As #z 
n is non-atomic for ~-a.e. z E Z and ~(#)(1-[i=l Ui) > 0, by Lemma 5.3 there 

exist a measurable set A C Z with zl(A) > 0, a positive integer r > n and a 

measurable partition ~ = {B1 ,B2 , . . . ,Br}  of X such that  ~- I (A)M Bi C Ui, 

i = 1 , 2 , . . . , n  and #z(Bj) = l / r ,  j = 1 , 2 , . . . , r  for ~-a.e. z E Z. 

Since 

ht,(Tm,lP) = Hu(s = ~ f -pz(By)log#z(Bj)d~ = logr, lim 
m--++c~ J z  

j----1 

we can find l > 0 such that  hu(Tt,P) > ~(Z \ A) �9 logr + ~l(A) �9 log(r - 1). 

Let S = T t and define ~-a.e. on Z a function hu(S , ~, z). By Lemma 5.1, we 

have f z  h,(S, ~, z)&](z) = h,(S, F). 

For z E Z set 

f(z):  = ( h , ( S , F , z ) -  log(r - 1)). 1A(Z). 
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As hu(S, IP, z) < logr, f(z) is a bounded measurable function on Z and 

Note that  

1A(Z) __> 
f(z) 

log(r~r 1) " 

f z  f(z)d~(z) = .]a hu(S' I?, z)d~(z) - rl(A) . log(r - 1) 
f 

= [ hu(S,]?,z)d~(z)- [ hu(S,~,z)dy(z) - ~(A). log(r - 1) 
J z  dz \A 

> hu(S, IP) - ,l(Z \ A). logr - o(A)" log(r - 1) > O. 

i m - - 1  By the Birkhoff ergodic theorem, 1 ~i=o f(Siz) converges a.e. to a function m 

f* E LI(~) and fz  f*(z)d~(z) = fz  f(z)d~(z) > O. 
Set R = {z E Z : if(z) > 0}. Then one gets rl(R ) > 0. It is well known that 

for any i E N, Si#z = #Siz for ~-a.e. z E Z. By the Birkhoff ergodic theorem, 
1 m--1 m }-'~i=0 1A(Siz) converges a.e. to a function 1d* E Ll(r/). 

Choose w E R with Si#• -- #si,o, S ip c 13uw for any i E Z and 

lim 1 m ~ + ~ m +  1 1A(Siw) = 1A*(W) 
i=o 

and let 

A = {k E Z+: Skw E A} := {al < a2 < . . . } ,  

where/3~,~ is the completion of B under #,o. Put  

C B C . . .  V {(Tc-I(A) MB1),(Tr-I(A)M 2), , (rr-l(A) MBr)C}. 

Then L/ _> V and we have the following Claim whose proof comes a little bit 

later. 

CLAIM: hc(S,']d) ~ f*(od) > O. 

With this Claim finally, we have 

hc(T,U) >_ ~hc(S, bl) >_ ~hc(S,V) > ~f*(w) > 0. 

Proof of Claim: For any G c X, and any cover s = {E1,E2,... ,Et} of X, let 

GMs = {Gf')E1,GNE2,. . . ,GNEt}.  
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Note tha t  for any x E 7r-l(w), Sa~x E ~r-l(A). Therefore, for any x E 

7r-l(w),i E N, and any subset D of X,  we have Sa~(x) E D if and only if 

S a' (x) E 7r -1 (A) 71D. Moreover, for any finite cover D of X and k E N, we have 

k k 

N ( V  S-a'D, ~- '  (w)) : N ( V  S -a' (~- '  (A) r~ D), ~ - '  (w)). 
i = 1  i : 1  

Let 1;' = {Tr -1 (A) N B1,7r -1 (A) N B e , . . . ,  7r -1 (A) N Br}. Since ~-1 (A) rh 1; = 

(r - 1)l;' and 7r -1 (A) N]P = 12', we have 

H ( ( I ; ) ~ - I  (S)) = 
> 

> log 

= log 

= log 

log N((12)~ n-' (S)) _> log N((I;)~ -1(S), 7r -1 (w)) 

log N(v~: , ,  s -a '  v ,  ~-1 (~)) 
(where ak,,, _< m - 1, ak,,,+l >_ m) 

logg(v~'"lS-a'(Tr-l(d) rl l;), 7r-1 (w)) 

log N(V k:', S -a '  ((r - 1)~2'), 7r -1 (w)) 

N(V~:,lS-a,V,, ~ - 1 ( ~ ) )  _ kin" lod~  - 1) 

(by Lemma 3.3) 

N(V~'_21S -a '  (Tr -1 (A) 71 liD), 7r -1 (w)) -- km" log(r - 1) 

N(V~Z ' lS -a '~ ,  ~ - 1 ( ~ ) )  - k ~ .  log(~ - 1). 

Now, we est imate M(1) = logN(S-a l lP  V . . .  V S-a'IP, Tr-l(w)). Since for any 

i E N, Si#~ = #si~, we have H ~  (S-k]?ld) = H~sk~ (]pIskc), where d, Skd are 

finite subalgebras of B ~  and k E Z+. Thus, 

l - - a i  M(m) = log#{ ( j l , . .  , j l) e {1,...  ,r}t: 7r-l(w) rl (r-li:lS Bj,) y! ~} 
_> log # { ( j , , . . .  , j l )  e { 1 , . . . , r } t :  #w(Tr-l(w) r-i (R~=xS-a'Bj,)) > 0} 

l 

> H,~( v s-a']P) 
i =1  

l l 

= H , ~ ( S - a ' i t [  V s-~'~) + H.~(V S-a'~) 
i----2 i = 2  

l l 

= H.~,~(ltl V s-r + H,~(V S-~'e) 
i = 1  i = 2  

l l 

_> h.(S,~,Sa'~)+ H.~( V S-a'~)>_ F_h.(S,e,S~ 
i = 2  i----1 
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Combining the above results, we have 

km 

H((V)~ (S)) -> E h•(S, ]P, Sa'w) - km" log(r - 1) 
i=1 

m--1 

= E (h" (S']?'S~w) - l o g ( r -  1)). 1A(Siw) 
i=0 

rr~--I 

= ~ f(Siw) �9 
i=0 

Therefore, one gets 

hc(S,V)= lim 1 H ( O d ) ~ - I ( S ) )  
m--++oo m 

> lim 12m=~lf(siw) = f*(w). 
- -  m - - + + o o  m - -  

This  ends the proof of Claim. | 

Remark: 

and 

Since 

1A*(W) = lim 1 m~+oo m + 1 1A(Siw ) 
i=-0 

> lira 1 ~ f(Siw) f*(w) 
- m o + ~  m + 1 i=0 1 ~ )  - l o ~ )  > 0 

?n 

lira 1"4fq {0 ,1 ,2 , . . . ,m}]  = lira 1 E 1A(Siw) 
m-+-boo m + 1 m--+q-oo m + 1 

i=0 

= 1A*(W), 

.4 is a subset of Z+ with positive density. 

Let Q (k) = S -a '  (7r-1 (A) n I?) V . . .  V S -  a~ (rr -1 (A) n II') and I Q (k)l its cardi- 
nality. Prom the proof of Claim, one has 

log IQ(k)[ _> log N(Q(k), 7r -1 (w)) = M(k) 
k 

> 

i = I  

ak 

= k.  log(r - 1) + E(h, (S , I? ,SJw)  - log(r - 1)). 1A(SJw) 
j-=O 
ak  

= k .  log( r  - 1) + f(sJ ). 
j = 0  
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Therefore, 

. a k  IQ(k)l > (r 1)k2~j =~ (r 1 ) k 2 k - ~ v ' ~  "SJ~ '  - -  - -  ~ - -  z - -~  j = 0  . J ~  1. 

Since 

lim --1 f (SJw)  = f*(w) > 0 
k-~+oo ak j=0 

and 

lim (k/ak) = lim --1 "~-'~] 1A(SJco) > 0, 
k~- t -oo m-++oo  T/~ j=0 

there exist h > 0 and M E N such that for any k >__ M, 

IS-~ ' (Tr- ' (A)  N I?) V . . .  V S - ~ ( 1 r - I ( A )  N P)I >- (r - 1)k2 kh. 

Set D = rr-l(A) and S = {si: si = lai}. Then S i s  a s u b s e t  of Z+ with 

positive density. Moreover, one has the following corollary, which will be used 

to characterize the topological entropy n-tuples. 

COROLLARY 5.6: Let (X, T) be a TDS and # E M ( X ,  T)  be an ergodic measure 

with hu(T ) > O. IfUi E B u, i = 1 , 2 , . . . , n  with A,~(#)(l-Ii~=l U 0 > 0, then there 
exist a measurable partition lid = { B1, B2, . . . , Br } of X with r > n, a measurable 

set D C X and a positive density subset S = {sl, s2 , . . . }  of Z+ such that 

(1) D N B ~ c U i ,  i = I , 2 , . . . , n ,  

(2) there exist h > 0 and M E N sudl that for any k >_ M,  

[ T - 8 ~ ( D N ~ ) V T - S : ( D N P ) V  . . . V T - 8 ~ ( D N P ) I  _> (r - 1 ) k 2  kh. 

Proof: The corollary now follows flom the proof Theorem 5.5 and the above 

Remark. | 

We may use the claim in the proof of Theorem 4.6 to prove a result stronger 

than Theorem 5.5. 

THEOREM 5.7: Let (Y,D,u ,T)  be a MDS. Il l4 = {U1,U2, . . .  ,U,~} (n > 2) is a 

measurable cover of Y with h, (T , / / )  > 0, then hc(T,U) > O. 

Proof'. Let P,  be the Pinsker a-algebra of (Y,/), v, T). For any 

s = ( s (1 ) , . . . , s (n ) )  e {0,1} ~, 

set As = N'i~_l Ui(s(i)), where Ui(O) = Ui and Ui(1) = 
a = {As: s �9 {0,1}~}. 

Y \ Ui, and 
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By the claim in the proof of Theorem 4.6, there exists e > 0 such that  

H~,(a[l~ V P~,) <_ H,,(alP~,) - e, for any finite measurable partition /~ which 
is finer than b/as  a cover. 

Since limn-~+~ h.(T n, a) = H.(alP.), there exists l > 0 such that  h.(T t, a) 
> H~(alP~ ) - e/2. Set S = T t. 

Let n E N and ~ be a finite measurable partition with ~ _> vin=-01 S-ill .  Since 

SiS is finer than U for i E {O, 1 , . . . , n -  1}, one has 

( n - - 1 ) ( n - i v l  0 ) H.(/~[P.) = H .  V V S-ial  P" - H. s-{ lZ V P. 
/ : 0  

n- -1  n - - I  

" i = 0  i = 0  

n - 1  

For each n E N, there exists a finite measurable partition ~n, finer than 
n--1  

Vi=o S-il~l, such that 

n--1 

( v .-..). 
i = 0  

Hence 

n - 1  

he(S,.): lira-llogN/V S-iLl) >limsuplHu(~n[P~) 
n-+oo  n - i --0 n---~co 

) ] _> limsup-1 g~ S_%lp.  - n(II.(alP.) - e) 
n-+oo  n i = 0  

= h~,(S, a) - H~,(alP~,) + ~ > c/2. 

Thus, hc(T,U) >_ t he(S,U) > 0 and the proof is finished. | 

6. T h e  r e l a t ions  of  topo log ica l  a n d  m e a s u r e  e n t r o p y  n- tup les  

Let (X, T) be a TDS. An n-topo (xi)'~ is called in t r ins ic  if xi ~ xj for i 

j .  For n _> 2, denote by Ee(X,T)  the set of intrinsic n-topo. It is easy to 

see that  Eu(X, T), E~n(X,T), and Ee(x ,  T) are invariant under the change of 
coordinates in X (n). 

In this section, we shall prove that  i fp  E M(X, T), then En(X, T) D_ E~n(X, T) 
for each n _> 2 and there exists p E M(X,T)  such that  En(X,T) = E~n(X,T ) 
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for each n > 2. Moreover, we shall show that a TDS with positive topological 
entropy must have intrinsic n-topo and En(X, T) = cl(Ene (X, T)) \ An(X)  for 

each n _> 2. First we prove 

THEOREM 6.1: Let (X,T)  be a TDS and It E M(X ,T ) .  Then for ead~ n _> 2, 

En(X, T) ~ E~n(X, T) = Supp(An(#)) \ An(X). 

Proof." Let (xi)i~=l E E~n(X,T) and/4 be a finite open cover of X admissible 

with respect to (xi)i~l. It is easy to see that any finite measurable partition I~, 
X n , finer than/4, is an admissible partition with respect to ( i)i=l Thus h,(T,  P) > 

0, since (xi)~ e E~(X,T) .  By Theorem 5.5, htop(T,L/) = hc(T,l.t) > O. | 

LEMMA 6.2: Let (X,T)  be a TDS. If It E M ( X , T )  is ergodic, then for every 
n>_2, 

cl(Ee(X,T)) \ An(X)  D Supp(An(It)) \ An(X)E~n(X,T). 

In particular, if htop(T) > O, then Ee(X ,T)  ~ 0 for every n >_ 2. 

Proob Let /3, be the completion of/~(X) under #. Then (X, /3,, #, T) is a 

Lebesgue system. 

If h,(T) = 0, one has Supp(An(#)) \ An(X) = E~(X,T)  = 0. 

We now assume h,  (T) > 0. Let P,  be the Pinsker a-algebra of (X, B,, it, T). 
Let 7r: (X, B,, #, T) ~ (Z, Z, ~l, T) be the Pinsker factor of (X,/3,, #, T) and 

It = f z  Itzdq be the disintegration of It over (Z, 71). By Lemma 5.4, Itz is non- 
atomic for ~-a.e. z E Z and hence 

"~n(it)(/kn) = /Z Itz X Itz X . . .  X pz(/kn)d~(z ) ---- O. 

Thus, Supp(An(p)) \ An ~ 0. Since # is ergodic, 7r is a weakly mixing exten- 

sion and ,~n (#) is ergodic. Thus (Supp(An (#)), T(n)) is topologically transitive. 

Since Supp(An(#)) is invariant under exchanging coordinates of X (n), for each 

transitive point (xi)~ of (Supp(An(#)),T (n)) we have xi r xj i f / r  j. 

By Theorem 6.1, (x~)[ E E~(X,T) .  Since cl(Ee(X,T)) is a closed T (n)- 

invariant subset of X (n), one has cl(E~(X, T)) \ An(X)  D Supp(,~n (#)) \ An(X)  
(= E~(X,T)) .  | 

We say that a partition P is finer than a cover L/when every atom of I~ is 

contained in an element of L/. The following lemma is Theorem 1 of [BGH]. 
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LEMMA 6.3: Let (X, T) be a TDS, and 14 an open cover of X.  Then there 

exists # C M ( X , T )  such that h,(T,P) >_ htop(T,/4) for all Borel partitions P 
finer than hi, i.e., h~(T,L/) ~ htop(T,L/). 

With the above preparation we now show 

THEOREM 6.4: Let (X, T) be a TDS. Then there exists # E M(X,  T) such that 

En(X,T)  = E~n(X,T)(= Supp(An(#)) \ An(X))  for each n > 2. 

Proo~ Let n > 2. First we have 

CLAIM: For any point (xi)~ E En(X, T) and any neighborhood Ui of x~, there 
ex is t s ,  E M ( X , T )  with E~(X,T)  M (U1 x [/2 x ... x Un) ~ O. 

Proof of Claim: Without loss of generality, assume that  Ui is a closed neighbor- 

hood of xi such that  UiMUj = ~ if xi ~ xj and Ui = Uj i fxi  = xj, 1 <_ i < j <_ n. 

Let U = {U~, U~, . . . ,  UC). Clearly, htop(T,U) > 0. By Lemma 6.3, there exists 

v E M (X, T) such that  h~ (T, I?) _> htop (T, U) for all Borel partitions IP finer than 
M n U. By Lemma 4.3 one has An(u) ( r In l  Ui) > 0, i.e., Supp()~n(u)) l-L=1 Ui ~ ~. 

As rIi~l  ui N An(X) = 0, one has E~(X,T)  N (U1 x [/2 x . . .  x Un) ~ 0 by 
Theorem 4.4. This ends the proof of the claim. 

By the claim, we can choose a dense sequence of points 

x m .  �9 , n ) .m _ >  1} 

x r ~  v m in En(X,T)  with (x '~ ,x~ , . . . ,  n ) e En" (X,T)  for some p m E A/I(X,T). 
Let 

n----2 \ m = l  

Since for any measurable partition c~ of X, n _> 2 and m E N, 

1 
h~(T,a)  _> 2m+n_l h~::~(T,a), 

therefore En ::~ (X, T) C E~n(X, T). In particular, (x~ n, x~n,. . . ,  Xn m) E E~n(X, T). 
Moreover, 

E~(X,T)  n { ( x '~ , x~ , . . . , xm) ;m  >_ 1} \ An(X) = En(X,T),  

that  is, E~n(X, T) = En(X, T). I 
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THEOREM 6.5: Let (X,T)  be a TDS. Then for eadl n _> 2, 

En(X,T)  = el(Ee~(X,T)) \ An(X).  

Proof By Theorem 6.4, there exists p E M ( X , T )  such that  En(X,T)  = 

E~(X, T) for each n _> 2. Let # = ft2 #~dm(w) be the ergodic decomposition. 

By Theorem 4.9, for an appropriate choice of fl, 

c l ( U { E ~ ( X , T ) :  w �9 fl}) \ A,~ = E~(X,T) .  

Now for each w �9 fl, E ~ I X  T) C cl(Ee(X,T)) by Lemma 6.2. Therefore, Tt \ , 

E~(X,T)  C cl(Ee(X,T)).  As cI(Ee(X,T)) C E~(X,T)  C En(X,T)  U A,~(X), 

one has En(X, T) = cl(E,~(X, T)) \ A , (X) .  | 

To end the section we give a characterization of n-topo. Let (X, T) be a TDS 

and ]? = {A1,A2 . . . .  ,An} be a measurable partition of X. We say that  ]? is 

topological non- t r iv ia l ,  if cl(Ai) ~ X for each 1 < i < n. 

LEMMA 6.6: Let (X,T)  be a TDS and # �9 M(X ,T ) .  Then E'n(X,T ) = 

X (') \ An(X) if and only if for any topological non-trivial measurable 
partition I? of X by n sets, one has h~,(T, ?) > 0, where n >_ 2. 

Proo~ Let E~(X, T) = X ('0 \ An(X).  For any topological non-trivial measur- 

able partition P = {A1, A2 , . . . ,  An} of X, choose xi �9 X\c l (Ai) ,  i = 1, 2 , . . . ,  n. 

Clearly, (xi)l ~ �9 X (n) \ A,,(X) and I? is an admissible partition with respect to 

(xi)~. Thus lh,(T , P) > 0. 

Conversely, assume for any topological non-trivial measurable partition IP of 

X by n sets that one has h~,(T, IP) > 0. Let (xJ~ ~ �9 X (n) \ A,~(X). For any 

adnfissible partition IP = {A~, A2 , . . . ,  An} with respect to (xi)~, I? is topological 

non-trivial. Thus h , (T ,P)  > O. This shows (xi)'} �9 E~(X,T) .  | 

TtlEOREM 6.7: Let (X, T) be a TDS and n > 2. Then 

(1) (X, T) has u.p.e, of order n if and only if there is # E M(X,  T) such that 

for any topological non-trivial measurable partition P of X by n sets, one 

has hu(T,P ) > O. 

(2) (X, T) has u.p.e, of all orders if and only if there is l* E M(X,  T) sud2 

that for az2y topological non-trivial measurable partition IP of X by finite 

sets, one has hu(T, I?) > O. 

Proof: It is a direct cousequence of Theorem 6.4 and Lemma 6.6. | 
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7. A t h e o r e m  on weak dis jointness  

In the section, we shall show that u.p.e, of order 2 systems is weakly disjoint from 

any transitive system, and while doing this, we give another characterization for 

u.p.e, of order n or u.p.e, of all order systems. First, we need a combinatorial 

lemma, the idea of whose proof is in Proposition 8.2 [W1]; see also [S]. 

LEMMA 7.1: Let r _> 2. For every h > O, there exist b(h) > 0 and Mh E N 
such that if  m >_ Mh and B C {1,2, . . .  ,r} m satisfies IB[ > ( r -  1)m2 mh, then 

we can find Jm C {1 ,2 , . . . ,m} with [dm[ >_ b(h)m and B[j  m = {1 ,2 , . . . , r}  gin, 

i.e., for any s E {1, 2 , . . . ,  r} Jm there is b E B with b(j) = s(j) for j E Jm. 

Definition 7.2: Let (X, T) be a topological dynamical system. 

(1) Nonempty subsets U1,U2,. . . ,  Un of X have Property Pn, if there exist 

b > 0 and Mb E N such that for any natural number m >_ Mb, we can 

find Jm C {1,2 , . . . ,m} with [Jm[ >_ bin, and Jm satisfies that for any 

s E {1 ,2 , . . . ,n}  Jm, there exists x E X with x E ~jEJ., T-JUs(j) �9 

(2) (X,T) is said to have Property Pn if any nonempty open subsets 

U1,U2,. . . ,Un of X have Property Pn. (X,T) is said to have strong 
property P if it has property P~ for every n _> 2. 

THEOREM 7.3: Let (X ,T )  be a TDS and (xi)~ qd An(X) with n >_ 2. Then 
(xi)~ E En(X,  T) if and only i f  for any neighborhood U1 x U2 x . . . x U~ of (xi)'~, 
U1, U2, �9 �9 Un have Property Pn. 

Proof." For any (Yi)? E X (m) \ ~kin with m k 2, assume that {Yl, Y2,..., y,~} = 

{ X l , X 2 , . . . , x n }  andxi  ~ xj for 1 < i  < j _< n. It is clearn > 2. Note that 

(yi)il E E m ( X , T )  if and only if (xi)[ E En (X ,T ) ,  and for any neighborhood Vi 

of Yi, V1, V2,.. . ,  Vm have Property Pm if and only if for any neighborhood Ui 
of xi, U1, U2, . . . ,  Un have Property Pn. 

Thus, we may assume that xi # xj for 1 _< i < j _< n. Let (xi)~ E E , ( X , T )  

and Ui be a neighborhood of xi with Ui M Uj = fJ, i ~ j. By Theorem 6.4, there 

exists u E M ( X , T )  with (xi)~ E Supp(An(U)). Hence An(u)(Hn=Iui) > 0. By 
Corollary 4.7, h,(T,  {U~, U~,. . . ,  Uc}) > 0. 

By Lemma 4.8, there exists an ergodic measure it with hu(T,{U~, U~, . . . ,  U~}) 

> 0, i.e., An(P)(l-In_l Ui) > 0. By Corollary 5.6, we know that there exist a 
measurable partition P = {B1, B2 , . . . ,  Br} of X, D C X and a positive density 

subset A = {nl ,n2, . . .}  of N such that D M Bi C Ui,i = 1 ,2 , . . . , n  and 

IT-n l (D M ]P) V T-n2(D M I?) V " " V T - " k ( D  N ]P)I >_ 2kh(r --1) k 
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for each large enough k E N, where h is a positive constant. 

By Lemma 7.1, there exist b(h) > 0 and Mh E 1N such that  for every nat- 

ural number k > Mh we can find Jk C {1 ,2 , . . . , k}  with IJkl > b(h)k and 
I T-n~( D FI = r 

Now, let 7r = {U],U2,...,U,~}. As D M B i  C Ui, i = 1 , 2 , . . . , n ,  one gets 

I Vjej~ T-nJTil = nlJ~l. Set 6 = limm~+oo ~ [ { 1 , 2 , . . . , m }  N ,41 > 0. There 

exists M e N such that  for any m _> M we have -~ l{1 ,2 , . . . ,m} M A I > 6/2. 

Set b = 6b(h)/2, MD = max{M, 2Mh/6} and, for each m >_ Mb, set k m =  
max{j E N : nj < m}. Then km> ~m > Mh. Let I m =  {nj : j E Jk,,}. Then 
one gets 

Im C {1, 2 , . . . ,  m}, Ilml = IJkm I >__ b(h)km >__ bm 

and [ Vie1,, T-iTtl = nlI,,I, i.e., for any s E {1 ,2 , . . . , n}  I'' there exists x E X 

with x E [-I~eI,,, T-iUs(o �9 Therefore, U1, U2, . . . ,  Un have Property pn. 
Conversely, let Ui be a closed mutually disjoint neighborhood of xi, i = 

1, 2 , . . . ,  n. Since Ui is a neighborhood of xi, U1, U2, . . . ,  Un have Property Pn, 
i.e., there exist b > 0 and Mb E N such that for each m > Mb, we can find Jm C 
{1,2, . . .  ,m} with IJml > bin, and Jm satisfies that for any s E {1 ,2 , . . . , n}  g ' ,  

there exists x~ �9 ~jeJ,,, T-J(Us(J)) �9 Let Xs  = {xs : s �9 {1 , 2 , . . . , n} J "} .  Note 

that  for every t �9 {1, 2 , . . . ,  n} J''' , we have I ~jeg,,, T-Ju[(j) f lXsl = (n - 1)lJ,,,I. 

Combining this fact and IXsl = nIJ,-I, one gets 

) n IJ,,d 
V ' 

jEJ , , ,  

. .  U c where L /=  {Uf, Uf, .  , n}" Thus 

-( v 
\ j E J,,~ 

Hence 

1 
htop(T,U) = lim H(UV T - l U  V. . .  VT-mbl)  

m--++oo m n t- 1 

> l i m i n f  1 H (  V T- iLl )>_blog(  7~--~_~ 1) 
- -  m--++oo ?n + 1 " j C J m  " 

> 0 .  

x '~ En(X,T).  I This shows that ( i)1 E 

An immediate consequence of Theorem 7.3 is 
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THEOREM 7.4: Let (X, T) be a topological dynamical system. 
(i) (X,T) is u.p.e, of order n if and only if (X,T) has Property Pn, where 

n > 2 .  

(ii) (X, T) is u.p.e, of all orders if  and only if (X, T) has strong Property P. 

For a TDS (X,T),  x E X and a pair of non-empty open subsets U, V of X, let 

N(x, U) = {n E Z + :  Tn(x) E U} and N(U, V) = {n E Z + :  U Cl T-n(v )  7 s 0}. 

For B C N and k E N, we define B + k = {b+ k : b E B}. Note that  two TDSs 

are weakly disjoint if their product is transitive. 

THEOREM 7.5: If a TDS (X,T) has u.p.e, of order 2, then it is weakly disjoint 
from any transitive system. 

Proof." Let (Y, S) be a transitive system. Assume that  U;, U2 and V1, V2 are 

non-empty open subsets of X and Y, respectively. Then 

N(U 1 x V1,U2 • V2) ~-- {n C Z-b:  (T  • s ) - n ( u 2  N V.2)rl(U 1 x V1) r O}. 

As (Y,S) is transitive, there are no E N such that  V = S-n~ M V1 is a 

non-empty open subset of Y. Thus 

N(Ux x V1, U2 x V2) 

= {n E Z+:  (T-n(u2) n Ux) • n Vx) # 

D {m C Z+ : (T-m(T-n~ 7/Ux) x (S-re(V) N V) 7s ~} -}- n O. 

Let Do = U1 and D1 = T-n~ Then 

N(U1 x V1, U2 • V2) D N(Do x V, DI • V) + no. 

Now, it remains to show N(Do • V, Dx x V) 7s ~. As (Y, S) is transitive and V 

is nonempty, N(V, V) = N(x, V) - N(x, V) contains an IP-set, i.e., there exists 

a sequence pl,P2,.. .  E N such that  finite sums Pi, -kpi2 + " "  q-Pik E N(V,V) 
for each il < i2 < . "  < ik, see Theorem 2.17 in [F], where x is a transitive 

point in V and A -  A = { a -  b_> 0 : a,b E A}. 

As Do, D1 have Property P2, there exist b > 0 and Mb E N such that  for each 

m > Mb, we can find Jm C { 1 , 2 , . . . , m }  with [Jm[ _> bm, and Jm satisfies that  

for any s E {0, 1} J'" there exists xs E NjEJm T-J(Ds(j)) �9 
Choose M E N with Mb > 1 and assume m > max{Mb, (Pl +P2+"" .+pM)/b}. 

If J,~, Jm + Pl, Jm + (Pl + P2),- �9 �9 Jm + (Pl + P2 +""  + PM) are pairwise disjoint, 
then 

M 

[Jrn U U Jm -I'- (Pl nCP2 n u ' ' "  "t"pj)[ ~- (M + 1)[Jm[ >_ (M + 1)bm. 
j= l  
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Since 
M 

Jm u U J,,, + (pl + p2 + . . .  + p~) 
j=l 

C {1 . . . .  , m , m  + 1,. . .  ,m + (Pl + " "  + PM)}, 

we h a v e ( M + l ) b m < m + ( p l + p 2 + . . . + p M ) .  A s b m > _ p l + p 2 + . . . + p M  
and Mb > 1, this is impossible. Thus there exist 1 _< sl _< s2 _< M such that 

Jm n (J,~ + E;:=slpj) • ~. Thus, we can find j~,j2 E Jm with jl - je = ~;~=slPJ" 
Let s E {0, 1} J' '  with s(j) = 1 i f j  = Jl and 0 otherwise. As njej , , ,  T-J(D4J)) 

r ~), one gets T-J~(D1) OT-J2(Do) r 0, that  is, Do NT-(J~-J2)(D1) r 0. Thus 

82 

E PJ E N(Do, D 1 ) N N ( V , V ) =  N(Do x V, D1 x V). 
j=Sl 

This ends the proof of Theorem 7.5. | 

8. O t h e r  c h a r a c t e r i z a t i o n s  an d  app l i ca t i ons  

In this section we will give some other characterizations of positive entropy, 

u.p.e, of order n and all orders. We first show 

THEOREM 8.1: Let (X,T)  and (Y,S) be TDS. 
(i) If (X, T) and (II, S) have u.p.e, of order n, so does (X • Y, T x S), where 

n > 2 .  
(ii) If (X,T)  and (Y,S) have u.p.e, of all orders, so does (X • Y ,T  • S). 

Proof'. (ii) follows from (i) and it remains to show (i). By Theorem 6.4 and The- 

orem 4.4, there exist # E M ( X , T )  and u E M(Y, S) such that Supp(A,~(#)) = 

X (n) and Supp(An(u)) = y(n). Let Pu (resp. Pv) be the Pinsker a-algebra of 

(X, B(X),  #, T) (resp. (Y, B(Y), u, S)). It is known that Pu x Pv is the Pinsker 

a-algebra of (X • Y, B(X x Y), # • u, T x S) (see Theorem 14 of [P]). 

For any open sets Ui and Vi of X and Y, i = 1, 2 , . . . ,  n, 

~n(]t X P) H g i x V i  = 1-IE(1u,• lP.•215 
i : 1  XY i : 1  

n 

: fx II l, ,lP.l+. HE(1v i IP ' )  du 
i=1 i=1 

= ~ ( ~  �9 ~ ( ~ )  > o, 
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since both ~n(tt)(1-l~nl U~) and )%(u)(l-l~n=l V~) are positive. It follows that  

Supp(A~(/t x v)) = (X x y)(n), i.e., (X x Y, T x S) has u.p.e, of order n. 8 

We shall say that  a subset /3 of 1~ is i n t e r p o l a t i n g  with respect to sub- 

sets {Ui}iu__, if for any s E { 1 , 2 , . . . , n }  B there exists xs E X with x~ E 

~jEt3 T-'~Us(j)" 

X n TttEORI~M 8.2: Let (X,T) be a TDS and ( i)1 ~- An(X)  with n > 2. Then 
(xi)~ E En(X,  T) if and only if  for any e > 0 there exists a positive density 
subset A of N such that for any s E {1 ,2 , . . . , n}  A, we can find xs E X with 

d(Tax~, x~(~)) < e for all a E A. 

Proo~ (1) Let (xi)~ E En(X,T) .  For any e > 0, set 

= x :  d(x,x ) < f o r  / = 

By Theorem 7.3, U1,U2,... ,Un have Property P~, i.e., there exists b > 0 and 

Mb E N such that  for any m > Mb, we can find Jm C { 1 , 2 , . . . , m }  with 

[Jm[ >__ bin, and Jm satisfies that  for any s E {1, 2 , . . . ,  n} z'' there exists x~ E X 

with x~ E ~jeJ,.  T - J U s ( j )  �9 

Now let 

= U 5c {B c N : B is interpolating with respect to { i}i=1}" 

As J,~ E ~" for m 2, Mb, ~ is nonempty. Set 

~'(X) = {y E {0, 1}N: ~/3 E 5 c such that  y(j) = 1 if and only if j E B} 

and let a: {0, 1} N -4 {0, 1} N be the shift map. 

As U1, U2,. . . ,  Un are closed, it is easy to see that  Y(X) is closed and a- 

invariant, i.e., (~-(X),cr) is a subshift. For each m >_ Mb, take yrn E ~ ( X )  with 
1 ~ m - l , ~  . ym(j) = 1 if and only if j E J m .  Assume #m = m=i=o v~,y.,, for m > Mb and 

let # = limi-~+c~ #m~ be a limit point of {Pro} in the weak*-topology. Clearly, 

p is a a-invariant measure. 

Note that  tL([1]) = lim~_~+~ ~,~,([1]) > liminfi-~+~(iJm, i/mi) >_ b, where 
[1] = {y E J-(X): y(1) --- 1}. By the ergodic decomposition we know that  

there exists an ergodic measure u of (F (X) , a )  with v([1]) >_ ~([1]). Let x E 
1 ~m-- l ,~  5c(X) be a generic point of u, i.e., limm-~+~ ~-~-7~i=0 "~'x = u. Set .4 = 

{j E N : x(j) = 1}. Then A is interpolating with respect to {Ui}i=l and 

A is a positive density subset of N, since limm-~+c~ -~]A M {1,2 , . . . , rn}l  = 
limm-~+~ ~ m-1 = 
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Now, for any sE {1, 2 , . . . ,  n} A, there exists Xs E X with xs E NacA T-aUs(~)' 

U '~ since A is interpolating with respect to { i}i=l. Thus Tax ,  E U~(~) for all a E A. 

Hence d(T~xs, xs(,)) < e for all a E A. 
(2) Conversely, assume for any e > 0 there exists a positive density subset .A of 

N such that  for any s E {1, 2 , . . . ,  n} A, we can find Xs E X with d(Taxs, xs(~)) < 

e for all a E A. We shall show that (xi)[ E En(X ,T ) .  
For any neighborhood Ui ofxi ,  take el > 0 with B~(x i )  C Ui, i = 1 ,2 , . . .  ,n.  

Thus there exists a positive density subset A of N such that  for any s E 

{1 ,2 , . . . , n}  A, one finds xs E X with d(T~x~,X~(a)) < el for all a E A. 

Let b' = l imm~+~ ~IAM {1 ,2 , . . . ,m}]  and b =  b~/2. Then b > 0 and there 

exists Mb > 0 with JAM {1 ,2 , . . . ,m} l  >_ bm for all m > Mb. 

Now, for any m >_ Mb set Jm = .AM {1 ,2 , . . . ,m} .  Clearly, [Jml -> bin. For 

any s E { 1 , 2 , . . . , n }  J'", let 

s'(a) = { s(a)l if a C_ a E Jra 

for all a E ,4. For s' E {1,2 , . . .  ,n} A, there exists xs, E X with d(Taxs,,xs,(a)) 

< el for all a E A. In particular, for a E Jm we have T~xs, E B~ (x~(a)) C Us(a). 

Therefore xs, E NjEJ., T-JUs(a) �9 This shows that  U1, U2, . . . ,  Un have Property 

Pn. This implies that  (xi)~ E En(X ,T ) .  I 

THEOREM 8.3: Let (X, T) be a topological dynamical system and n >__ 2. 
(i) (X, T) has u.p.e, of order n if  and only if, for any e > 0 and {xl ,  x2,. . ., Xn } 

C X ,  there exists a positive density subset A of N such that for any 
s E { 1 , 2 , . . . , n }  A, we can find xs E X with d(Taxs,Xs(a)) < e for all 

a E A .  
(ii) (X, T) has u.p.e, of all orders if  and only if, for any e > 0, there exists a 

positive density subset A of N such that for any {xa}aeA C X ,  we can 

find x E X with d(Tax, xa) < e for all a E A. 

Proo/: Without loss of generality we assume that  (X, T) is not trivial. (i) 

follows from Theorem 8.2. Now we prove (ii). As the sufficiency follows from 

(i) it remains to show tile necessity. 

Let (X, T) have u.p.e, of all orders. For any c > 0, there exist k _> 2 and 
k {Yi}i=l C X such t h a t  U i k l  Be/2(yi) = X and (y l ,y2 , . . .  ,ya) r Ak(X).  

As (X, T) has u.p.e, of order k, (Yl, Y2, . . . ,  Yk) E Ek (X, T). By Theorem 8.2, 

there exists a positive density subset ,4 of N such that  for any s E {1, 2 , . . . ,  k) A, 

we can find x8 E X with d(Taxs,ys(a)) < ~/2 for all a E A. 



270 W .  H U A N G  A N D  X. Y E  Isr .  J. M a t h .  

Now, assume {Xa}aeA C X.  As U ~ I  Br = X,  there exists i(a) E 
{1 ,2 , . . . , k}  such that  Xa E B~/2(Yi(a)) for every a E .4. Let s E {1 ,2 , . . . , k}  A 

with s(a) = i(a). Then there exists xs E X such that  d(T~xs, Ys(a)) < e/2 for all 

a E .4. As Xa E B~/2(Ys(a)), one has d(Taxs, Xa) <_ d(T~xs, Ys(a))+d(ys(~), x~) < 
e for all a E .4. I 

THEOREM 8.4: Let (X, T) be a topological dynamical system and n >_ 2. Then 

(i) (X, T) has u.p.e, of order n if and only if (2 X, T) has n.p.e, of order n. 

(ii) (X, T) has u.p.e, of all orders if and only if (2 x,  T) has u.p.e, of all orders. 

Proof: It is enough to prove (i). Let d be a metric of X and Hd be the Hausdorff 

metric of 2 X. 

First let (2 X, T) have u.p.e, of order n. For any e > 0 and {xl, x 2 , . . . ,  Xn} C 

X, set Ai =- {x/}. By Theorem 8.3, there exists a positive density subset 

`4 of N such that  for any s E {1 ,2 , . . . , n}  A, we can find As E 2 x with 

Hd(TaAs,As(a)) < e for all a E A. For any Xs E As, we have d(Taxs,Xs(a)) < e 
for all a E A. By Theorem 8.2, (X, T) has u.p.e, of order n. 

Conversely, let (X, T) have u.p.e, of order n. For any e > 0 and 

{A1, A2, . . . ,  An} C 2 X ,  

there exists M E N such that  we can find Bi i i = {x l ,x2 , . . . ,x~4  } C X with 
Hd(Bi, Ai) < e/2 for i = 1, 2 . . . , n .  By Theorem 8.1, (x(M),T (M)) has u.p.e, of 

order n. Let dM be a metric of X (M) with dM ( ( x l ,  x 2 ,  �9 �9 �9  XM), ( Y l ,  Y2, �9 �9 �9  YM)) 

---- m a x l < i < M  d(xi, Yi). 
By Theorem 8.3, there exists a positive density subset A of N such that  for 

s s ", x (M)  a n y s E { 1 , 2 , . . . , n }  A, we can find (Xl,X2,.. x~4) E with 

dM((T(M))a(x~, x2 . ..,  X~M), (X~(~) , X~(a) , . . . ,  XM-S(a) )) < ~/2 

for all a E A. 

Put  As = {x~,x~,.. . ,x~4 }. It is easy to see Hd(TaAs,Bs(a)) < e/2 for all 

a E A. Moreover, Hd(T~As,As(~)) < ~ for all a E `4. This implies that  (2X,T) 

has u.p.e, of order n by Theorem 8.3. I 

Now we give a characterization of positive entropy, which was proved by 

Glasner and Weiss [GW4] when X is a sub-shift and k = 2. 

THEOREM 8.5: Let (X,T)  be a TDS and k >_ 2. Then htop(T) :> 0 if and only 

if there exist k disjoint closed subsets B1, B2, . . . , Bk of X and an interpolating 

set of positive density with respect to {B1, B2 , . . . ,  Bk }. 
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Proo~ It remains to show the necessity. 

Let htop(T) > 0. Then E~(X,T) ~ 0 by Lemma 6.2. Take (x l ,x2 , . . .  ,xk) E 
E~(X,T).  Since xi ~ xj for 1 < i < j _< k, there exists e > 0 such that  

Bi f3 Bj -~ ~ for 1 < i < j < k, where Bi = {x E X : d(x, xi) < e} for 

each 1 < i < k. Now by Theorem 8.2, it is easy to see that  there exists an 

interpolating set of positive density with respect to {B1, B 2 , . . . ,  Bk }. II 

9. u.p.e, examples 

Let X be a compact metric space and T: X ~ X be continuous and surjective. 

For n > 2 we may define u.p.e, of order n in the same way. It is easy to see 

(X, T) has u.p.e, of order n if and only if its natural extension has u.p.e, of order 

n. Thus in this section we consider continuous surjective maps. 

For p >__ 2 let A = { 0 , 1 , . . . , p -  1} with discrete topology, E = A N with 

the product topology and a: E --4 E be the shift. For n >_ 2 and a = 

(el,  a 2 , . . . ,  an) E A '~ (a block of length n), let lal = n, a(a) = ( a2 , . . . ,  an) and 

P(a) = ( a 2 , . . . , a n , a l ) .  We say a a p p e a r s  in x = (xl ,x2, . . . )  E E or x E A m 

with m >_ n if there is j E N with a = (xj,xj+l,... ,Xj§ (write a < x for 

short) and we use t i to denote t . . . t  (i times). For b = (b l , . . .  ,bin) E A m, let 

ab = ( a l , . . . , a ~ , b l , . . . , b m )  E A '~+m. For X C E and A C X,  let A c = X \ A 
and 

[ a l , . . . , a n ]  -- {y E X: (Yl, . . . ,Yn) = ( a l , . . . , a n ) } .  

For an open c o v e r / / o f  X let n-1 //~=o = U V a - l g / V . . .  V a-(n-1)U and N(L/) be 

the minimal cardinality of subcovers of g/. For K C A n we say K covers X if 

U = {Uo, U1,.. . ,  Up_l } and 

X = U U~o N a-lU~l M ... M a-(~-l)U~_l.  
(io,...,i,~-l)EK 

Moreover, each k E K is called a U-name of length n. 

Det~nition 9.1: Let (X, T) be a TDS and U0, U1 are two non-empty open subsets 

of X. We say (X, T) has P r o p e r t y  P with respect to U0, U1 if there is N > 0 

such that  whenever k >_ 2, whenever s = (s (1) , . . .  ,s(k)) E {0, 1} k, there exists 

y E X with y E Us(I), . . .  ,T(k-1)N(y) E Us(k). 

The following lemma is basically Proposition 3 of [B1]. 
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LEMMA 9.2: Assume that ( X , T )  has Property P with respect to Uo, U1 and 

Uo M U1 = O. IfTr = {U, V} is an open cover of X with Uo C U c and U1 C V c, 

then htop (T, ~ )  > O. 

Proo~ As ( X , T )  has Property P with respect to Uo, U1, there is N > 0 such 

that  whenever k > 2, whenever s = (s (1) , . . . , s (k) )  E {0, 1} k, there exists 

z(s) E X with 

Z(8) E Us( l ) , . . .  , T ( k - 1 ) N ( z ( 8 ) )  E Us(k). 

Thus, if s and s ~ are two different elements of {0, 1} k, since Uo C U c and 

U1 C V c, the two points z(s) and z(s t) cannot be in the same elements of the 
c o v e r  T~ N-1. Hence N(T~ N-l)  > 2 ~, and htop(T,T~) ~ 1 log2. | 

LEMMA 9.3: Let  (X,T) be a TDS with a transitive point x. Then T has u.p.e. 

i f  and only i f  for each i E N, (x, Ti(x))  E E2(X ,T) .  

Proo~ Assume that  for each i E N, (x, Ti(x))  E E2(X,T) .  As x is a transitive 

point we have {x} x X C E2(X ,T ) .  Since E2(X ,T)  is T x T invariant we have 

Orb(x) z X C E x .  Thus E2 (X, T) = X x X. | 

We will construct a transitive subshift (X,a)  of (E,a)  such that  x = 

(xl, x2, . . . )  is a transitive point of (X, a) and satisfies 

1. (x, ai(x)) E E2(X ,T )  for each i E N, 

2. L / =  {[1] c, [2] c, [3] c} has zero entropy. 

More precisely, we will show 

THEOREM 9.4: There is a TDS which is u.p.e, of order 2 and not u.p.e, of order 

3. 

Proos Let r N --+ N such that  (r r  = (1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . ) .  

Set A1 = (00123000), nl = ]Aa l and  UI = {A1, a r (A1)0r 
Let C01 = AIO nl = Ar and C~ = a(A1)O~Onlar162162 n~'l). 

Assume 

{ D ~ ' " D I ~  D 1 . . . D  1 D 1 . 1 
' n l q - 1  2 n , ' ' "  " '  . 1 2 n l - - n 1 - - [ - i  "'D~12"1} = {C(~,C~} ~ ,  

where D 1 E {C 1, Cl 1 }. Set 

A2 AIO~I D~ 1 1 . . .  D 1 . . . .  Dn 1Dnl+ 1 .. Din1 . 1 " " " Dnl2"l --nlq-1 nl2nl ' 

n2 = ]A2I and l/2 = {A2,ar162 
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If A1 , . . . ,  Ak and/41, . . . , /4k are defined we let 

Cko = Ar no(k) and C1 k = (7r162162 

Assume 

{D k k D k .D k D k . k ""Dn~,  n ~ + l ' "  2 n k ' ' ' ' '  n~2 k--nk+l ' ' 'Dnk2"~}  -- { C k , C k }  nk" 

Set 

Ak+l = AkOnk D~ "" D k D k .. . Dk .. D k . k ,~ " nk nk-t-1 " nk2  ~ - - n k + l  " " " Dnk2 k, 

nk+l = IAk+ll and /4k+1 = {Ak+l,(7r162 

It is clear that  nk+l = 2nk + 2nc(k)nk2 nk = 2nk(1 + nr 

Let x = lim Ak and X = w(x ,  (7). We claim that  (X, a) is the system we need. 

First we show (X,(7) has u.p.e. To do this we need to prove that  (x, a i ( x ) )  �9 

E2 (X, T) for each i �9 N. 

Fix i �9 N. Suppose that  U is a neighborhood of x and V is a neighborhood of 

(Ti(x). By the definition of r there is k such that  r = i and U0 = [Ak] C U 

and Vo = [aiAkO i] C V.  Note that  Ak ~ aiAkO i. Thus UonV0 = 0, and 

consequently V0 C U~ and Uo C Vo c. It is clear that/4k = {Ak, (TiAkOi}. 

There are infinitely many j such that  r = k. Thus, 

CJo = AkO nk and C~ = (TiAkOiOn~, 

and 

Aj+ 1 AjO n~ D~ J J . . . .  DnjDnj+l  . . .  D~ni . . .  D3nj2,,~_nj+l . . .  D3nj2,~j 

J . . .  D j {CJo, C~ }nj for I O, 1 , . . . ,  2 nj 1. such t h a t  Dl+ln j ( / + l ) n ~  E = - -  

Set l; = {U~, VoC}. It is easy to see that  (X, (7) has Property P with respect 

to Uo, Vo. By Lemma 9.2, we have htop(a, ~) > 0 (let N = 2nk) and conse- 

quently htop(a, {U, V}) > 0 as {U, V} is finer than {US, VoC}. This proves that  

(x, a i (x ) )  E E 2 ( X ,  (7) and hence (X, a) has u.p.e, according to Lemma 9.3. 

Now we show tha t /4  = {[1] c, [2] c, [3] r } has zero entropy. 

Let n E N; then X = {y e X : y �9 [x j . .  "xj+,~-l] , j  �9 N} as x is a transitive 

point. For {io, . . .  , i n - l}  �9 {1,2,3} ~ let 

a ( i o , . . . ,  i~-1) = [io] c N (7 -1[i l ]  c CI... N (7-(n-1)[in_l]C. 
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It is easy to see that [y~,.. .  ,y~] C a ( io , . . .  , in-l)  if and only if yj+l E [ij] c 
for 0 < j < n -  1 and 

N(U~ -1) = min{lI(l: K C {1, 2,3} ~ and U o~(io,... , in_l)  = X}. 
io , . . . , i , ,_l  E lr 

As 

[1] C = [01 u [21 U [3], [2t c = [01 u [1] u [31, [3] c = [0] U [1] u [2], 

for each i , j  E {0,1,2,3} there is k E {1,2,3} such that [i] U [j] C [k] r Thus 

if a = (al , . . . ,  an), b : (h i , . . . ,  bn) E {0, 1, 2, 3} n there is c = ( c l , . . . , c a )  E 
{1~ 2, 3} n with 

[al , . . . ,  an] U [bl,. . . ,  bn] C c~(cl, . . . ,  ca). 

�9 i {1,2, 3} n' such that Now fix k E N. For each i < k, choose (c] . . . .  , G~,) E 

[Ai] u [~r *(~)] c ~(c~, . . . ,  c~, ). 

Then we claim that X is covered by the following hi-names of length nk, 

PY(Yl," i �9 . ,  y , ~ ) ,  

" " , Y n ~ - j ) ,  

( G ~ , "  ~ J .,yawl ), l < i < k  and l < j < n i ,  

if we write 

((C~ . .  pi  ]n , ' ) n t : / 2n ,  " i , ",~n~ ~ , ) = ( Y I , " . , Y n ~ ) ,  l < i < k - 1  and 
k (c~, . ,%)(y~, .  .. = . . ,  y ~ ) .  

In fact, if a is a block of length nk and appears in x, then there is j > k such 

that a appears in Ay. Hence by induction on j > k it is easy to show the claim. 
Thus 

k 

N(U[~_~ q) < E 4nk < 4knk <_ 4(nk) ~. 
j=-I 

This clearly implies that  htop (a, U) = 0. | 

A d i agona l  s y s t e m  is one such that E : (X,  T) contains 

~ '  = {(y, T y ) :  y e X}. 

Note that  u.p.e, implies diagonal. It is shown in [B2] that a diagonal system 

is disjoint from all minimal systems with zero entropy. Using the idea in the 
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proof of Theorem 9.4, we get a transitive diagonal system without u.p.e., and 

hence answer a question of [B2] affirmatively. More precisely, we will construct 

a transitive subshift (X, a) of (E, a) such that  x = (xl,  x2 , . . . )  is a transitive 

point of (X, a) and satisfies 

1. ( x , a ( x ) )  �9 E 2 ( X , T ) ,  

2. (x, a2(x))  r E 2 ( X , T ) .  

If this is the case, then (a i ( x ) , a i+ l ( x ) )  �9 E 2 ( X , T )  for each i �9 N. As x is a 

transitive point, for each y �9 X one has ( y ,a (y ) )  �9 E 2 ( X , T ) .  Moreover, (X ,a )  

does not have u.p.e., as (x, a2(x))  r E 2 ( X , T ) .  

THEOREM 9.5: There is a transitive T D S  which is diagonal and does not  have 

u.p.e. 

Proof'. Let r N -4 N such that  (r r  = (1, 1, 2, 1, 2, 3, 1,2, 3, 4 , . . . ) .  

Set A1 = (1020), nl = IAll and/41 = {AI ,a (A1)O} .  Let C~ = A10 n~ and 

C 1 = a(A1)O0 ~1. Assume 

{ D ~ . . . D  1 D 1 . . .D~n l  D i 1 na, n,+l , ' ' ' ,  nl 2n, - n l + l " ' "  Dn,2nl } -~ { C1 ' C1 }nl.  

Set 

A2 AIOnlD~ .. 1 1 . .D~nl . D 1 1 = " On1Dnl+l  " ' " n12 '~1-n1+1 " " " Dn12'~1, 

n2 = IA21 and /42 = {A2,a(A2)O}.  

If A1, . . .  ,Ak and b/ l , . . .  ,Uk are defined, we let 

Co k = A~(k)0 n~(k) and C1 k = a(Ac(k))O0 no(k). 

Assume 

{ D ~ . .  D k D k . D k D k , .. k �9 n~, nk+l "" 2 n k , ' " ,  n~2 k-n~+l "Dn~2"~}--- {C~ ,C~}  nk. 

Set 

Ak+l AkOn~ Dkl k k D ~ k  k ~ D k ,, -~ " " " nnkDnk+l  . . . . . .  Oak2 ~ : - n k + l  " * " n ~ 2  k , 

nk+l ----IAk+ll and Uk+l ---- {Ak+l ,a (Ak+l )O} .  

It is clear that  nk+l = 2nk + 2n4)(k)nk2 nk = 2nk(1 + nr 

Let x = lira Ak and X = w(x,  a) C {0, 1,2} z+. We claim that  (X, a) is the 

system we need. 
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First we will show that  U = {[1] c, [2] c} has zero entropy, and hence ( X , a )  

does not have u.p.e. Let n E N; then X = {y E X: y E [x j . .  "Xj+n-~],j E N} 

as x is a transitive point. For {i0, .- .  , i n - l }  E {1,2} n let 

, ( i o , . . . ,  i n _ , )  = [io] c n c n . . .  n o - ( n - 1 ) [ i n _ l ] C .  

It is easy to see that  [Yl,.-. ,Yn] C a( io , . . .  , i n - l )  if and only if Yj+I E [ij] c 

for 0 < j < n -  1 and 

N ( U ~  - 1 )  = min{l~r([ :  I (  C { 1 , 2 }  n a n d  U o~( i0 , . . .  , in_l  ) : X } .  
io,...,i,~_ l E K 

By the construction of Ai, it is not hard to see that  (12) ~ Ai and (21) ~ Ai 

for any i E N. As [1] c = [0] U [2], [2] c = [0] U [1], for each i E N there exists 

(c~ , . . . ,  c i , )  E {1, 2} TM such that  [mi] U [a(di)O] C a(c~,. .  ., Cn ). Similar to the 

proof of Theorem 9.4 one has htop(O', U) = 0. 

Now following the proof of Theorem 9.4, we can show that  (x, a(x))  E 

E2 (X, T). This ends the proof. I 

It is easy to see that  in Theorem 9.4 the set of periodic points in X is dense as 

for each k and j <_ nk+l/2nk,  (AkOnk) j appears in x. Thus, there is an invariant 

measure with full support  on X. This of course is also the consequence of the 

general result: each u.p.e, has an invariant measure with full support [B1]. 

The following theorem obtained by some modification of the construction of 

Theorem 9.4 answers a question of [B1, Question 2] negatively. Note that  Weiss 

[W2] has an example which is transitive and has an invariant measure with full 

support,  but there is no ergodic measure with full support. 

THEOREM 9.6: There is a TDS which is u.p.e, and there is no ergodic invariant 

measure with full support. 

Proo~ Instead of Ak+x in the construction of Theorem 9.4, we put Bk+l. Take 

B1 = (1020); we set 

Bk+l = BkOm~ D k ' '" 

nk+l = IBk+ll 

where m~ > nk(n2k2 n~ + 

D k D k .. Dknk k nk am~ n~ nk+l . . . .  D(2'~k --1)n~+l " " " ~'2~knk V- , 

a n d  Uk+ 1 ---- {Bk+l,  or162 

nk) and m k >_ nkmkl . 

Set y = lira Bk and Y = w(y, a). (Y, a) is also a system satisfying Theorem 

9.4. Moreover, the set of periodic points of Y is dense in Y and Y has an 

invariant measure with full support. We now show that  there is no ergodic 

measure on Y with full support. 
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Assume that  it is an ergodic invariant measure with full support�9 Let z be a 

generic point of #. Then z is also a transitive point of (Y, a) and we have 

n - - 1  

1 f n ~-" l[B1]ai(z) --+ l[B1]dp = #[B1] > 0, 
i = 0  

as lIB1] is a continuous map from Y to Ii{. 

Let N ( B 1 ,  C) be the number of times that  B1 appears in C. Then there is k0 

such that  if k > ko, we have 

n k - - 1  

1 ~ l [ . , ] a i ( z ) _ > _  
nk i=0 

1 2 and N ( B 1 , B k )  < _ _  

n k  o I rk  r t k  o " 

By induction, we can show that  for k > k0, if z = ( z l , z 2 , . . . )  and Ck = 

( z l , . . . ,  znk) then Ck only appears in 

0 ml D~ i i i i i ra~ �9 " " Dni Dn~+l " " " D2ni " " " D(2n, -1)n,+1 " " " D2'~in, O , 

for i E N with r _< ko. 

This implies that  z is not a transitive point, a contradiction. Hence there is 

no ergodic measure with full support. | 

Finally, we have 

QUESTION 1: IS there a u.p.e, o f  order 2 system having an ergodic, even s t rongly  

mix ing  invariant measure  wi th  full suppor t  but  not  u.p.e, o f  all orders? 

QUESTION 2: Let  (Y, l),  u, T) be a Lebesgue  s y s t em  and Ll be a finite measurable  

cover o f  X .  Do we have hc(T,  bl) >_ h ~ ( T , U ) ?  
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