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ABSTRACT

In [BGH] the authors show that for a given topological dynamical sys-
tem (X,T) and an open cover U there is an invariant measure g such
that inf by (T,P) > hiop(T,U) where infimum is taken over all partitions
finer than Y. We prove in this paper that if p is an invariant measure
and h,(T,P) > 0 for each P finer than U, then infh,(T,P) > 0 and
hiop(T,U) > 0. The results are applied to study the topological analogue
of the Kolmogorov system in ergodic theory, namely uniform positive en-
tropy (u.p.e.) of order n (n > 2) or u.p.e. of all orders. We show that
for each n > 2 the set of all topological entropy n-tuples is the union
of the set of entropy n-tuples for an invariant measure over all invariant
measures. Characterizations of positive entropy, u.p.e. of order n and
u.p.e. of all orders are obtained.

We could answer several open questions concerning the nature of u.p.e.
and c.p.e.. Particularly, we show that u.p.e. of order n does not imply
u.p.e. of order n + 1 for each n > 2. Applying the methods and results
obtained in the paper, we show that u.p.e. (of order 2) system is weakly
digjoint from all transitive systems, and the product of u.p.e. of order n
(resp. of all orders) systems is again u.p.e. of order n (resp. of all orders).
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1. Introduction

Ergodic theory and topological dynamics exhibit a remarkable parallelism. For
example, ergodicity, weak mixing and mixing in ergodic theory can be translated
as transitivity, topological weak mixing and topological mixing. The K-system
in ergodic theory is an important class and it completely differs from zero en-
tropy systems. It is well known that a measurable system is K if and only if it
has completely positive entropy (each non-trivial factor has positive entropy) if
and only if every partition by two non-trivial elements has positive entropy if
and only if every partition by finite non-trivial elements has positive entropy.
Using the first two conditions Blanchard [B1] introduces the notion of c.p.e. and
u.p.e. in topological dynamics as an analogue of the K-system in ergodic theory,
and shows that u.p.e. implies weak mixing and c.p.e. implies the existence of
an invariant measure with full support. He then naturally defines the notion
of entropy pairs and uses it to show that a u.p.e. system is disjoint from all
minimal zero entropy systems [B2], and then with Lacroix [BL] to show that
there is a maximal zero entropy factor associated to each topological dynamical
system, an analogous notion of the Pinsker factor in ergodic theory. Later on,
Glasner and Weiss [GW1] show that if a topological dynamical system admits
a K-measure with full support then it has u.p.e., and in [B-R] the authors are
able to define entropy pairs for a measure and show that for each invariant mea-
sure the set of entropy pairs for a measure is contained in the set of entropy
pairs. Blanchard, Glasner and Host [BGH] show that the converse of [B-R] is
also valid. Characterizing the set of entropy pairs for an ergodic measure as
the support of some measure, Glasner [G] shows that the product of two u.p.e.
systems has u.p.e. The topic on the relative notion of c.p.e. and u.p.e. can be
found in [GW2]. Further research concerning the above results can be found in
[KS], [LS]. Following the idea of entropy pairs one can also define complexity
pairs [BHM] and [HY], sequence entropy pairs [HLSY] and sequence entropy
pairs for a measure [HMY].

Despite great achievements, there are still many problems which remain open.
The most vexing ones (as we understand) are: if u.p.e. of all orders is equivalent
to u.p.e., how to define the entropy n-tuple for an invariant measure when n > 2
(the previous definition for n = 2 is not valid for n > 2)? We will give complete
answers to these questions in this paper.

Looking back at the results on the relation between the two kinds of entropy
pairs one finds that the local relation linking topological entropy for an open
cover and metric entropy for a partition plays the central role. In [BGH] the
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authors show that for a given topological dynamical system (X, 7T') and an open
cover Y there is an invariant measure p such that inf b, (T, P) > hyop(T,U)
where infimum is taken over all partitions finer than Z/. We prove in this paper
that if ¢ is an invariant measure and h,, (T, IP) > 0 for each partition finer than U,
then inf h,(T,P) > 0 and hyop(T,U) > 0. The two local variational relations are
applied to study the topological analogue of the Kolmogorov system in ergodic
theory, namely uniform positive entropy (u.p.e.) of order n (n > 2) or u.p.e.
of all orders. Localizing the notion of u.p.e. of order n, we define topological
entropy n-tuples {n-topo), and entropy n-tuples for an invariant measure (n-
meas). We show that for each n > 2 the set of all n-topo is the union of the
set of n-meas over all invariant measures. It turns out that if a topological
dynamical system admits an invariant K-measure with full support, then it has
u.p.e. of all orders. The above results generalize previous ones by many authors.
Characterizations of u.p.e. of order n and u.p.e. of all orders connecting with a
topologically non-trivial measurable partition (Theorem 6.7) or interpolating set
of positive density (Theorem 8.3) or Property P, (Theorem 7.4) or hyperspace
(Theorem 8.4) are given (they are new even for n = 2). It turns out that u.p.e. of
order 2 is close to Property P and u.p.e. of all orders is somehow related to the
weak specification property. Moreover, a characterization of positive entropy
via interpolating sets is obtained.

We could answer several open questions concerning the nature of u.p.e. and
c.p.e. Namely, we show that u.p.e. of order n does not imply u.p.e. of order n+1
for each n > 2 (answering a question by Host, which is restated in [GW2]), that
there is a transitive diagonal system which does not have u.p.e. (of order 2) [B2,
Question 1}, and that there is a u.p.e. (of order 2) system having no ergodic
measure with full support [B1, Question 2]. Applying the methods and results
obtained in the paper, we show that a u.p.e. (of order 2) system is weakly
disjoint from all transitive systems, and that the product of u.p.e. of order n (of
all orders) systems is again u.p.e. of order n (of all orders).

For the philosophical question, what is the best analogue of the K-system in
the topological setting, we think that u.p.e. of all orders is a good candidate:
Firstly, by the definition for each finite open cover with non-dense elements it has
positive entropy; secondly, u.p.e. of order 2 does not imply u.p.e. of order 3; and
finally, a system has u.p.e. of all orders if and only if there is invariant measure
w such that for each topologically non-trivial finite partition P, h,(T,P) > 0.

This paper is organized as follows. In section 2, we introduce some necessary
notions and in section 3 we prove that a dynamical system admitting an invari-
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ant K-measure with full support has in fact u.p.e. of all orders. In section 4 we
define entropy n-tuples for a measure and show that they have lifting property
and the set of entropy n-tuples for a measure is the support of some measure on
the product space. Note that we heavily use Rohklin’s result on the structure of
Lebesgue spaces [R]. In section 5 we prove a theorem on the interrelation of the
entropy of measurable covers and partitions; together with [BGH] we deepen our
understanding of the variational principle. We remark that the previous proof
in [B-R] is valid only for n = 2. Section 6 deals with the relation of n-topo and
n-meas. In section 7 and section 8 we give other characterizations of u.p.e. of
order n and u.p.e. of all orders, and use the results to prove that u.p.e. of order
2 system is weakly disjoint from all transitive systems. In section 9 we give the
examples.

We would like to thank the referee of the paper for the careful reading. The
main results of the paper were obtained several years ago. While modifying it,
some ideas of the paper have been applied to obtain some other results in [HMY],
[HMPY] and [HSY]. Particularly, it is shown in [HSY] that a minimal topological
system is strongly mixing. It is worth mentioning that just recently Glasner and
Weiss [GW3] showed that inf h,(T,P) < hop(T,U) for each invariant measure

L.

2. Preliminary

Let (Y, D,v,T) be a measure-theoretic dynamical system (MDS, for short) and
P, be its Pinsker o-algebra. For a finite measurable partition P, let P~ =
j:°1° TP, and H,(P|A) be the conditional entropy of P with respect to a o-
algebra A. As usual, PYT—'PV-..vT~("=UPis denoted by P§!(T) or simply
et
Recall that

hATP) = lim (857 = H,(PP) = L, (P[P V P.)

and
lim T~*P-VP, =P,

k=400
A topological dynamical system (TDS, for short) is a pair (X, T), where
X is a compact metric space and T is a homeomorphism of X to itself. Given a
finite cover I/ of X one defines the combinatorial entropy of i/ by the usual
formula,

1
he(T,U) = lim —HQUV TYU) V- vT- D)),
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the limit exists since H(I) = loginf #(U') is sub-additive, where the infimum
is taken over all subcovers U’ of i and # denotes the cardinality. Note that
he(T,U) coincides with hyop(T,U) when U is a finite open coverof X. By <V,
we mean that the cover If is coarser than the cover V and the same notation
will be used for partitions as well. When U <V, we have h (T, U) < h (T, V).
Since a finite partition P of X is also a cover, it has also combinatorial entropy.
In this case one has

n—1
.1 i
he(T,P) = lim ~log \/()T P|,
1=

where | \/7-) 7P| is the number of non-empty elements in \/7-)' T~*P. Hence
for a Borel invariant probability measure u, h,(T,P) < h(T,P).

The notion of topological entropy pairs is introduced in [B2]. Here we have
(see also [GW1))

Definition 2.1: Let (X,T) be a TDS and X = X x -+ x X (n times) with
n > 2. An n-tuple (z;)} € X is a topological entropy n-tuple(n-topo,
for short) if at least two of the points {x;}]-, are different and if whenever U;
are closed mutually disjoint neighborhoods of distinct points «;, the open cover
U = {Us: 1 < j < n} has positive topological entropy, i.e. hiop(T,U) > 0.

Let n > 2, X = X x --- x X (n times) and (z;); € X(™. Let U =
{U1,Us,...,Uy,} be a finite cover of X. We call i/ an admissible cover with
respect to (z;)}, if for each U; (1 <4 < k) there exists z;, (1 < j; < n) such
that x;; is not in the closure of U;.

Remark 2.2: It is easy to see that an n-tuple (z;)? € X(™ is a topological
entropy n-tuple if and only if at least two of the points {z;}-, are different
and for any admissible finite open cover I/ with respect to (z;)? € X one has
heop (T, U) > 0.

Definition 2.3: Let (X,T) be a TDS. (X,T) has uniform positive entropy
of order n (u.p.e. of order n, for short), if for every point (z;)} € X not on
the diagonal A, (X) = {(z)7: z € X} is n-topo. We say (X, T') has u.p.e. of all
orders or topo-K if it has u.p.e. of order n for every n > 2.

Clearly, a topological entropy 2-tuple is just a topological entropy pair and
u.p.e. of order 2 is just u.p.e. defined in [B1].

Remark 2.3: 1t is easy to see that
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(1) (X,T) has u.p.e. of order n if and only if any cover of X by n non-dense
open sets has positive topological entropy.

(2) (X,T) is u.p.e. of all orders if and only if any cover of X by finitely many
non-dense open sets has positive topological entropy.

For n > 2 denote by E,(X,T) the set of all n-topo, by E/ (X,T) its closure.
The proofs of the following results are similar to that of the corresponding results
in [B2].

ProprosiTION 2.4: Let (X,T) be a TDS.
(a) IfU = {U1,...,Uy} is an open cover of X with hyop(T,U) > 0, then there
are n points x; € Uf for 1 <i < n such that (z;)7 is n-topo.
(b) E!(X,T) is a nonempty closed T(™-invariant subset of X™ containing
only n-topo and points of Ap(X).
(c) Let m: (Y,S) — (X, T) be a factor map of TDS.
(1) If (z;)} € En(X,T), then there exist y; € Y, 1 < ¢ < n, such that
m(ye) = & and ()} € En(Y, ).
(2) Conversely, if (y;)} € Ex(Y,S) and (7(y;))} € An(Y), then (7(y:))T
belongs to E,(X,T).
(d) Suppose W is a closed T-invariant subset of (X, T). Then if (z;)} is n-topo
of (W, T|w), it is also n-topo of (X, T).

3. K-measure with full support implies u.p.e. of all orders

In this section we shall show that if (X,T) is a TDS and admits an invariant
K-measure with full support, then it has u.p.e. of all orders. Under the same
assumption Glasner and Weiss [GW1] show that it has u.p.e. of order 2, and
here by using a combinatorial result we avoid a complicated calculation and can
prove that in fact it has u.p.e. of all orders. The result in this section indeed
can be obtained from results in the later sections and we include the proof here
to illustrate the basic ideas (in fact it is the starting point of the research). To
do so, we need some lemmas. The first one is simple.

LEMMA 3.1: Let X be a compact metric space and p be a non-atomic probabil-
ity measure on the Borel o-algebra B(X) of X. If B € B(X) with p(B) > r > 0,
then for any 0 < 6 < r there exists a Borel set By such that By C B and
p(Bg) = 6.

The sccond one is well known; see, for example, [BGH].
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LemMmA 3.2: Let (Y,D,v,T) be a MDS and P, be its Pinsker o-algebra. Then
for any finite measurable partition P of Y, lim,,_, 1 oo by (T",P) = H,(P|P,).

Let (X,T) be a TDS and C be a subset of X. If a« = {4, 4,,...,A4,} is a
finite cover of C and k < n, then

ka={AiIUAi2U"'UAik21Si1<i2<"'<ikSn}

is again a finite cover of C. Let N(a,C) be the minimum number of sets in any
finite subcover of a covering C. Note that aVT1aV. VT~ ("Dq is denoted
by af~!(T) or simply o . We have (see [X])

LeEmMMA 3.3:
(1) N(a,C) < kN(ka,C).
(2) T-™(ka) = kT~™(a), for m € Z.
(3) Ifag, ...,y are covers of C, then koo V kay V -+ V kay_y is a subcover
of k'(agVay V- Va_y), where k < ming<;i<i—1 #(0o;), and

E'N(kao Vkay V- Vkay_1,C) > EEN(E (ao Vay V-~V oy_y),0)
> N(aOVa1 V"'VO([_l,C).

(4) Ifa is a finite cover of X and k < #(«), then h (T, ka) > h (T, o) —logk.

Proof: (1)-(3) are easy to prove, and (4) can be proved using (1)—(3). 1

With the above preparation we can now show the main result of the section.
Note that we use M(X,T') to denote the set of all Borel invariant probability
measures under 7.

THEOREM 3.4: Let (X,T) be a TDS. Suppose there exists u € M(X,T) which
is a K-measure with full support; then (X,T) has u.p.e. of all orders.

Proof: Since (X, T, ) is a measure-theoretic K-system, p is non-atomic. For
any n > 2 and n different points 1, zs, . . . , Zn, let U; be closed mutually disjoint
neighborhoods of ;. Put r = minj<;<n{u(U;)}. Since Supp(u) = X, we have
r > 0. Choose k € Nsuch that 0 < 1/k < r and k > n+1. By Lemma 3.1, there
exists a measurable partition P = {By, By,..., B} with B; CU;,1 = 1,2,...,n
and p(B;) = 1/k,for j =1,2,...,k.

Let P, be the Pinsker o-algebra of (X,T,u). As p is a K-measure, P, =
{X,0}. Since

lim h,(T",P) = H,(P|P,) = H,(P) =logk

n—-+00
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(by Lemma 3.2 and P, = {X,0}), there exists ! € N such that h,(T",P) >
log(k — 1).

Let U = {Uf,U4,..., Ut} and V = {B{,BS,...,B{}. It is easy to see that
V<Uand V= {U;z Bi,Uizz Bis- - -, Ui Bi} = (k = P

Therefore,

1 1
Mo (T, 1) > Thiop (T 1) = The(ThU) > 1he(T",V)

> %(hc(Tl,IP’) —log(k —1)) (by Lemma 3.3 (4))

> %(h#(T’,lP’) —log (k—1)) > 0.

Hence T has u.p.e. of all orders. |

Using Theorem 3.4 and Proposition 2.4, and following the proof of the
corresponding results in [GW1], we have

THEOREM 3.5: Given an arbitrary ergodic MDS (Y,D,v,T) with positive
entropy, there exists a strictly ergodic u.p.e. of all orders TDS (X,T) with
an invariant measure p such that the systems (Y,D,v,T) and (X,B,u,T) are
measure-theoretically isomorphic.

4. Entropy n-tuples for an invariant measure

Let (X,T) be a TDS, up € M(X,T) and B = B(X) be the Borel o-algebra of
X. In [B-R] the authors introduce the notion of entropy pairs for a measure
and the notion cannot be directly generalized for n-tuples when n > 2. In this
section we will give a definition of entropy n-tuples for a measure which is the
same as the previous notion when n = 2. Then we show that the set of entropy
n-tuples for a measure is the support of the disintegration of the measure over
the Pinsker factor (see Glasner [G]). Finally, we show that entropy n-tuples for
a measure have the lifting property.

Let B, be the completion of B under 4. A C X is a p-set if A € B, and
A C X is a Borel set if A € B. Now we define entropy n-tuples for p.

Definition 4.1: Let n > 2 and (2;,)} € X \ A,(X). By an admissible
partition P with respect to (z;)7 we mean
1. P is a finite Borel partition of X and
2. if P = {Ay,..., A}, then for each 4; (1 < ¢ < k) there exists z;
(1 < ji < n) such that z;, & cl(4;).
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(x;)} is an entropy n-tuple for p, if for any admissible partition I’ with respect
to (z;)} we have h,(T,P) > 0.

Remark 4.2: In the definition of an admissible partition, we may replace (1)
by (1)": IPis a finite p-set partition of X.

Denote by E#(X,T) the set of all entropy n-tuples for u (n > 2). In the
following, we investigate the structure of E¥(X,T).

Let (Y,D,v,T) be a MDS and P, be its Pinsker o-algebra. Define a measure
An(v) on (YR D) T(®)) by letting

/\n(u)<ﬁAi> :/X;lj]E(IAJP,,)dV

=1

where D =D x --- x D (n times), T™ =T x --- x T (n times) and 4; € D,
i=1,2,...,n. To get a characterization of E#(X,T) we need

LeEMMA 4.3: Let (Y,D,v,T) be a MDS and U = {U,,Us,...,U,} be a mea-
surable cover of X. Then A (v)([1, Uf) > 0 if and only if for any finite
measurable (or n-set) partition P, finer than U as a cover, one has h,(T,P) > 0.

Proof: Assume that for any finite measurable (or n-set) partition P, finer than
U as a cover, one has h, (T,P) > 0 and A, (v)([1=, Uf) = 0.
Let C; = {z € X : E(1y¢|P,)(z) >0} € P... As

0= [ ByglP(@)ds = v(UF N (X\C),
X\Ci

we have v(UF\ C;) = 0,1 < i <n. Put D; = C; U (Uf \ C;); then D; € P,
and Df C U, 1 <1i<n Forany s = (s(1),...,s(n)) € {0,1}", let D, =
Niz, Di(s(i)), where Dy(0) = D; and Dy(1) = X \ D;. Set D} = (N, DN
(U; \U Uk for j =1,2,.

C0ns1der a measurable partltlon

P={Dy:s€{0,1}" and s#(0,0,...,00}U{Dg,D},...,Dg}.

For any s € {0,1}" with s # (0,0, --,0), one has s(i) = 1 for some 1 < i < n.
Then D, C D$ C U; and clearly, D0 cU;,j=1,2,...,n. Thus P is finer than
U, and h,(T,P) > 0.

On the other hand, since A\, (v)(ITi—, Uf) = 0, it is easy to show that
v(NL, D) = v(N,; C:) = 0. Thus one has D§,D§,...,D§ € P,. It is clear
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that D, € P, for s € {0,1}", since Dy, Ds,...,D, € P,. As each element of P
belongs to P,, one gets h,(T,P) = 0, a contradiction.

Now assume Ap, () (II7, UE) > 0. For any finite measurable partition P finer
than U as a cover, without loss of generality, we assume that

P ={A},As,..., An}

with A; CcU;,i=1,2,...,n
Note that

/HIEI,\\A |P,)(z)dv(z /H]E1UL
:An(u)<£[1Uf> > 0.

Therefore, A; € P, for every 1 < j < n. This implies h,(T,P) > 0. |

dv(z)

Now we show a characterization of E#(X,T) for any n > 2 and we remark
that the case n = 2 is proved in [G].

THEOREM 4.4: Let (X,T) be a TDS and p € M(X,T). Then E¢(X,T) =
Supp(An(p)) \ An, where n > 2.

Proof: Let (z;)} € E#(X,T). To show (z;)} € Supp(An(it)) \ A4, it remains
to prove that for any neighborhood U; of x;, An(p)(IT-, Us) > 0.

Set U = {Uf,Us,...,UL}. Without loss of generality, we assume that i is a
measurable cover of X (if needed, replace U; by a smaller neighborhood). It is
clear that for any finite measurable partition P, finer than ¥/ as a cover, P is an
admissible partition with respect to (z;)}. Therefore h,(T,P) > 0. By Lemma
4.3, M) ([T, Ui) > 0.

Now assume (z;)} € Supp(A, (1)) \ An. We will show that h,(T,P) > 0 for
any admissible partition P = {A4;, Ao,..., Ay} with respect to (z;)7.

Since P is an admissible partition with respect to (x;)7, there exists neigh-
borhood U; of x; such that for each ¢ € {1,2,...,k} we find j; € {1,2,...,n}
with A; C U7. That is, P is finer than U/ = {Uf,Us,...,Us} as a cover. As

p)(IT, Ui) > 0, one has h,(T,P) > 0 by Lemma 4.3. [ |

From now on we proceed to show that the lifting property is valid for entropy
tuples for a measure (Theorem 4.10). To do so we need
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LeEMMA 4.5: Let o, be finite measurable partitions of a MDS (Y,D,v,T).
Then h,(T,a) < h,(T,3)+ H.(a}B V P,).

Proof: Let a, = H.,(ag_lwg_l V P,). First we show that a, is sub-additive.

In fact

=H,((aV B)gt™ "|P.) — H. (83" '|P,)
=H,((aVB)y ' VT "(aV )y IP) - H(Bg VI3 |P)
=H,(T"™(aV B)§" |P.)) + Hu((aV B)g T ™MaV B)§ ™' VP,)
- H, (85 VT "85 |P)
<H,(T™™(aVB)7!P,)+ H,((aV By ITT"83* V P,)
- H,(837' VT85! |R)
=H,(T™(aV )y~ |P) - H(T"f3 Y |R)
+ H (2 ' vAT VT AP, - H (B VT BT R,)
=a,;, + H,,(oz(')"_lw(’,‘_1 v T (’)"‘1 VP,)<am+an.

Antm

Since ay, is sub-additive, limy 400 (an/n) = infr>1(an/n). Therefore,

h(T,a) — hW(T,8) < h(T,aVv p)—h(T,0)
- lim H,((aV ﬂ)3_1|P,,) - HV(ﬂg‘IIPu)

n—++00 n

. a . an
= lim = =inf =< H,(a|fV P,).
nstoo . n>l | T v(alBV Py .

To simplify the notation we now introduce

Definition: Let (Y,D,v,T) be a MDS and U = {U;,Us,...,U,} be a measur-
able cover of Y. Set

h,(T,U) := inf{h,(T,P) : Pis a finite measurable partition finer than «}.

It can be considered as the measure entropy of cover I with respect to v.

The following theorem and Theorem 5.7 are crucial for our paper and will be
useful in other settings as well.

THEOREM 4.6: Let (Y,D,v,T) be a MDS and U = {U;,Us,...,U,} be a mea-
surable cover of Y withn > 2. If h,(T,IP) > 0 for every finite measurable (n-set)
partition P, finer than U as a cover, then h,(T,U) > 0.
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Proof: By Lemma 4.3, Ay (v)([T32, US) > 0, ie., [y [Tr; E(Lyg|P,)dv > 0.
Hence, there is a natural number M such that v(D) > 0, where

D= {SL‘ €eX: lr<nlél lE(lUic|P,,)(a:) > 1/]\1}

For any s = (s(1),...,s(n)) € {0,1}", set Ay = N, Ui(s(i)), where U;(0) =
U; and U;(1) = X \ U;, and a = {4, : s € {0,1}"}. We have
Cramm: H,(a|BV P,) < H,(a|P,) — %2 log(-25), for any finite measurable
partition 8 which is finer than I as a cover.

Proof of Claim: Without loss of generality, assume 8 = {By, B, ..., B,} with
B,cU;,i=1,2,...,n. )
Let f(z )_{Ozlogx if £ >0,

Then if z =0.
Hy(a|BV P))=H,(aV B|P,) — H,(B|P,)
E(a,n8|P)
(4.6.1) / sE{OZl}‘IZI oI ( Elalr) /™
E(14,nB|P0)
= E(1,|P,) dv
se{‘%‘:}‘/ 13%0 ( Els. [P )

where i, s(7) = 0 means “for all ¢ with s(z) = 0”. The last equality comes from
the fact that for any s € {0,1}" and 1 < i < nif s(i) = 1, then A, NB; =0

and the fact that
E(lA nB; |P)
E(1g,|P,)

Put ¢, =37} (520 E(1p,|P). As f is concave,

(z)=0.

(4.6.1) < ( K 13 |P Ela.n Py )>d
96{01}' i,5(1)=0 E(1p, 1)
_ / (—‘z 5(i)= oIE(14 ALY ))du
se{0,1}*

S [ “"’)

s€{0,1}"
(/ F(E(LA,\P) du—/ E(14,|P,)log(1/cs)d )
s€{0,1}"

=H,(o|P,) - Z / (1a,|P.)log(1/cs)d

s€{0,1}"
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Note that if S(Z) =1 (1 <2< n) then Ek,s(k):OE(lB;c IP,,) < E(lx\g\. !Py), as ,5
is a partition. Putting b; = E(1x\g,|P,), ¢ = 1,...,n, then we have

1
> / (14,]P,)log (Ek,s(k):o iy IPV)>dU

s€{0,1}™

“n Z/ <ss1,)1

:_Z/E(h}qp log du>—2/log—du

= > —
nM/log T dz/ /log s

(1a.1P,) ) log E)1—_du

as
(~—»——————bl+'7'l'+b”)nzbl...bn
and
Zb —ZZJ}HB [P,) _(71—1)21&*(15 |P))=n-1.
i=1 j#i
Hence

v(D) n
H,(alBV P,) < H,(o|P,) - S=* log (n g 1).

This ends the proof of claim.

Put (D)
v n
€ = ——M—log(m) >0.
Since Jimtp, 400 M (T™, @) = H,(a|P,), there exists [ > 0 such that h, (T, a) >
H,(alP,) — ¢/2. Now for any finite measurable partition 3, finer than i as a

cover, one has

h (T, 8) >

N{H

BAT',6) 2 7 (h(T',0) — H,(alf v P) >

by Lemma 4.5. This shows that h,(T,U) > ¢/21. ]
An immediate consequence is

COROLLARY 4.7: Let (Y,D,v,T) be a MDS and U = {U1,Us,...,U,} be a
measurable cover of Y. Then h,(T,U) > 0 if and only if X (v)([]}-, U?) > 0.

Proof: It follows from Lemma 4.3 and Lemma 4.6. |
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LEMMA 4.8: Let (X,T) be a TDS, p € M(X,T) and U be a finite Borel cover
of X. If p = [, medm(w) is the ergodic decomposition of y, then h,(T,U) =
Ja Puo (T, U)dm(w).

Proof: Let U = {U1,Us,...,Un}. Define
U(P) ={B: 8={B; CU;: 1 <i< N} is Borel partition of X}.

As X is a compact metric space, there exists a countable family {P; € U(P) :
i € N} such that it is L'(v)-dense in U(P) for each probability measure v on
X. In fact, if {V;} is a base of X and A is the algebra generated by {V;} UU,
then IP; can be taken such that its j-th element is in .4 and is contained in Uj,
1< 7 < N. Clearly, for each v € M(X,T), h,(T,U) = inf,cn h, (T, ;).

Let € > 0. As h, (T.U) = infien by, (T,P;) for each p, € Q, there exists,
therefore, a partition {Qy, }neren of © (mod m) with m(Q,) > 0 for every n € I
such that b, (T,P,) < by (T,U) + € if p, € Qy.

For n € I write t, = m(,) and p, = ti fQ" ttodm{w). One has

Py, (T, ) = 21— /Q hy, (T, Pp)dm(w)

gtl by (T, U)dm(w) + .
n JQ,

The measures {u,} are mutually singular, i.e., there exist Borel subsets
{Xn}ner such that, foreachn, k € I, pn(Xp) = 1 and i, (Xy) = Ofor k # n. We
can assume that {X,},¢s is a partition of X. Let P, = {BF C U;: 1 <i < N}
and B; = |J,;(Xn N BY). Then P = {By,B,,...,By} € U(P) and P = P,
(mod py,) for each n € I. We have

h(T,P) = " tnhy, (T,P) = > tohy, (T, By)
< [ (@, Uym(@) + e
Q
Hence h, (T, U) < [ by, (T,U)dm(w) + € and thus
ha(T,U) < / by (T, 1) dim().
Q
On the other hand,

() = inf by (T, Py) = inf /Q By (T, By)dmi(w)

> /th (T, U)dm(w).
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This shows that h,(T,U) = [, by, (T,U)dm(w). [ |

With the help of Corollary 4.7 and Lemma 4.8 we now can show Theorem
4.9, which discloses the relation of entropy tuples for a measure and entropy
tuples for ergodic measures in its ergodic decomposition, generalizing Theorem
4 of [BGH].

THEOREM 4.9: Let (X,T) bea TDS, u € M(X,T) and pu = [, p,dm(w) be its
ergodic decomposition.

(i) For m-almost every w, E*(X,T) C E*¥(X,T), where n > 2.

(i) If (z;)} € E¥(X,T), then for every neighborhood V of (z;)},

m{w: VN EL(X,T)#0} > 0.
Thus for an appropriate choice of €1,

d(J{B (X, T):w € Q}) \ An(X) = EX(X,T).

Proof: (i) Let U;, i = 1,2,...,n be open subsets of X with ", cl(U;) =
0 and ([Ti, elU:) N ER(X,T) = 0. As EX(X,T) = Supp (i) \ La(X),
An () (TTiz; cl(U3)) = 0. By Corollary 4.7,

h,(T,U) =0, whereld ={U;,U3,...,US}.

As [o by, (T,U)dm(w) = hy(T,U) = 0, hy,,(T,U) = 0 for m-a.e. w. By Corol-
lary 4.7, A (pw)(ITie, (Ui)) = 0 for m-a.e. w. Hence ([];—, Ui) N E&(X,T) = 0
for m-a.e. w.

Since EX(X,T)U An(X) is closed in X (™ its complement can be written as
a countable union of sets of the form H?:l U;, where U;,i = 1,2,...,n are open
subsets with ();_; cl(U;) = 0. By definition, E¥~ (X, T) N A, (X) = 0 for all w,
and we conclude that for m-a.e. w, Bt~ (X, T) N (EX(X,T))" = 0.

(ii) Without loss of generality, we assume V = [[7_; 4;, with A; a closed
neighborhood of z; and (), 4; = 0.

As A (u)(TT7., Ai) > 0, one has hy, (T, {4$, 45, ..., A5}) > 0. Since

/Qhﬂw (T,{AS, A, ..., AL dm(w) = h, (T, {Af, 45,...,A5}) > 0,

there exists ' C Q with m(Q') > 0 such that when w € (',

n

hy (T, {AS, A5, ..., AS}) > 0, e, An(uo)(J] 4i) > 0.

i=1
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Clearly, w € ', (I, A;) N E¥ (X, T) # 0. This shows

m({w: VN E*(X,T) #0}) >0. &

The special case n = 2 of the following theorem is proved in [BGH] and now
we can show

THEOREM 4.10: Let m: (X,T) — (Y, S) be a factor map of TDS, n € M(X,T),
and v be its image under .
(1) For every (z;)} € EX(X,T) let n(x;) = yi, ¢ = 1,2,...,n. If (;)} ¢
An(Y)7 then (yl)? € E;:(Y’ S)
(2) Forevery (y;)} € E}(Y,S), there exists (x;)} € EX¥(X,T) with w(z;) = y;,
1=1,2,...,n.

Proof: (1) follows directly from the definition. Using Theorem 4.9 and Theorem
4.4, (2) follows from the proof of Theorem 5 in [BGH]. |

5. Entropy of measurable covers and partitions

In this section, we prove that for a MDS (Y, D, v, T), if 4 is a finite measurable
cover of Y such that h,(T,U) > 0, then h.(T,U{) > 0. In section 6 we will apply
this result to show that each n-meas is an n-topo. First, we discuss some basic
properties of the Pinsker factor.

We say (Y,D,v,T) is a Lebesgue system, if (Y,D,v) is a Lebesgue space
and T is an invertible measure-preserving mapping on it. Here, we require that
D is complete under v, i.e., if A € D with ¥(A) = 0 then for any C' C A one has
CeD.

Let (Y,D,v,T) be a Lebesgue system, P, be its Pinsker o-algebra. Let
m (Y,D,v,T) = (Z,2,n,T) be the measure-theoretical Pinsker factor of
(Y,D,v,T), where we require that (Z,Z,n,T) is also a Lebesgue system.

Let v = [, v,dn(z) be the disintegration of v over (Z,7) (see [F] and [R]). It
is known that for n-a.e. z € Z, v,(n71(2)) = L.

Recall that (see section 4) for a MDS (Y, D,v,T), A, (v) is a measure on
(Y, D) Ty with X, (v)(TT, 4i) = Jy Iz B(14;|P,)dv(y) for any A; €
D,i=1,2,...,n. Note that for a Lebesgue system (Y, D,v,T), E(14|P,)}(y) =
Vr(y)(A) for A € D and v-a.e. y € Y. Moreover, we have

)\n(v):yxzuxz‘nxzz/:/szuz---xuzdn(z).
~ v ZL ~ >4
n n
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Given !l € N, let S = T*, and P be a finite measurable partition of Y. Define
a function h,(S,P, z) n-a.e. on Z by the formula

h,(S,P,z): = lim H, (P|S~'PM),
n [0 ¢]

where P" = \/;:01 S~iP. It is not hard to see that h,(S,P,z) is a measurable
function on Z and h, (S, P, 2) < log #(P). Moreover, 7 is invariant under S. We
have

LEMMA 5.1: [, h,(S,P,2)dn(z) = h,(S,P).

Proof: Using monotone convergence theorem and noting that lim, 1 a, = a
implies limp 00 £ Y_1*; a; = a, we have

/ h, (S, P, z)dn(z) = / lim H,, (P|S™!P")dn(z)
z Zn—>+oo

= lim H, (P|S~'P™)dn(2)
z

n—+00

lim [ H, (P"*1) - H, (S™'P")dn(2)

n—-400 z

(5.1)

= lim [ H, (P"™)— H, (P")dn(z)

n—+-+00 Z

1 n
lim —/ZHL,Z(IP’ Ydn(z).

n—-+oo N

il

For A € P", since E(14|P,)(y) = vr(y)(A) for v-a.e. y € Y, we have

HE"R) = S [ B(LaIP)0) og(E(LAIP) )i o)

Aepbn

= % [ () ogluu(4)in(a)
Aepn’Z
= / H, (P™")dn(z).
Z
Since P, is also the Pinsker o-algebra of (Y, v, S), (5.1) equals

lim L H,(P"|P,) = h (S, P).

n-++00 N
This ends the proof of Lemma 5.1. |
The following lemma is from [R] (lemma 3’ in §4 No. 2).
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LEMMA 5.2: Suppose v, is non-atomic for n-a.e. z € Z. If B is a measurable
set of Y with v,(B) > r > 0 forn-a.e. z € Z, then for any 0 < 8 < r there exists
a measurable set By such that Bg C B and v,(By) = 8 for n-a.e. z € Z.

With the help of Lemma 5.2 we prove a lemma which is important in the
proof of Theorem 5.5 and could be useful in other settings.

LEMMA 5.3: Suppose v, is non-atomic for n-ae. z € Z. IfU; € D, i =
1,2,...,n with ), (U; x Us x --- x Uy,) > 0, then there exist a measurable set
A C Z with n(A) > 0, a positive integer r > n and a measurable partition
P = {B1,Ba,...,B;} of Y such that 7~'(A)NB; C U;, i = 1,2,...,n and
v,(Bj)=1/r,j=1,2,...,r forn-ae z € Z.

Proof: Put C;={z€ Z:v,(U;) >0},i=1,2,...,n. Since
0 < M) (Ur X Up x - x Up) = / I] »Uadnz)
Z

onehasnﬂ L Ci) > 0.

We use mductxon to construct B; and first we do so for By. Let A’ = (., Ci;
then A’ is a measurable set of Z and n(A4’) > 0. It is easy to see that there exist
a positive integer r > n and a measurable set A C A’ such that n(4) > 0 and
v,(U;y>n/rforany z € A,i=1,2,...,n. Setting

Dy =7~ YZ\ A)U (x 1 (A)NT),

we have v,(Dy) > n/r for n-ae. 2 € Z. By Lemma 5.2, there exists a
measurable set By C D; such that v,(B;) = 1/r for n-ae. z € Z, and
Binn Y (4) c Dinn(4) C Us.

Suppose measurable sets By, have been constructed (1 < k < r), and By
satisfies
(1) for 1<i<k-1,B,NB; =0
(2)k v.(By)=1/r for n-a.e. z € Z;
(3)r BrNm Y(A) C Uk (when k > n, weset Uy =Y).

If £ =r, we are done. If k < r, we set

D _{(w‘l(Z\A)U(r‘l( YUk ) \US, B: ifk+1<n,
k1 =

Y\UY, B if k+1>n.

It is not hard to see that v,(Dyy1) > 1/r for n-a.e. z € Z. By Lemma 5.2,
we can find measurable sets Byy; C Dyyy such that v, (Bgt1) = 1/r for n-a.e.
2z € Z. Obviously, By, satisfies (1)1, (2)k+1, (3)kt1-
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By the above inductive construction, one gets a partition P={By, Bs,..., B}
of Y, and P satisfies v,(Bx) = 1/r, k = 1,2,...,r for n-ae. 2 € Z and
Biﬂﬂ'_l(A)CUi,izl,...,n. [ |

The following lemma is well known.

LEMMA 5.4: Let (Y,D,v,T) be a Lebesgue system, =: (Y,D,v,T)—=(Z,Z,n,T)
be the Pinsker factor of (Y,D,v,T) and f 4 V2dn = v be the disintegration of v
over (Z,n). If v is an ergodic measure with h,(T') > 0, then we have
(1) v, is non-atomic for n-a.e. z € Z;
(2) = (Y, D,v,T) = (Z,2,n,T) is a weakly mixing extension and \,(v) is
ergodic.

With the above preparation we can show Theorem 5.5. In fact, Theorem 5.5
is a consequence of Theorem 5.7. The proof presented here has some important
by-products which will be used in later sections.

THEOREM 5.5: Let (X,T) be a TDS and p € M(X,T). If U is a Borel cover
of X such that h,(T,U) > 0, then h.(T,U) > 0.

Proof: By Lemma 4.8, we may assume that p is ergodic. Let B, be the com-
pletion of the Borel o-algebra B(X) under p. It is well known that (X, B, u, T)
is a Lebesgue system. Let P, be the Pinsker o-algebra of (X, B,,u,T). Let
m: (X, Bu,u,T) = (Z,2,n,T) be the Pinsker factor of (X,B,,u,T) and p =
J; nzdn be the disintegration of u over (Z,n). By Lemma 5.4, p is non-atomic
for n-a.e. z € Z.

Let U = {Uf,U$,...,UL}. By Corollary 4.7, A\ (p)([Tiey Ui) > 0. As p,
is non-atomic for n-a.e. z € Z and A, (p)([1;=; Us) > 0, by Lemma 5.3 there
exist a measurable set A C Z with 5(A4) > 0, a positive integer r > n and a
measurable partition P = {By, B, ..., B} of X such that 7=1(4) N B; C U;,
i=1,2,...,nand p,(B;) =1/r, j =1,2,...,7r for n-a.e. 2 € Z.

Since

T
Jlim (T B) = Hu(B1R) = 3 [ (B logu(B;)dn = ogr,
j=1
we can find [ > 0 such that h,(T*,P) > n(Z \ A) - logr + 5(4) - log(r — 1).

Let S = T! and define n-a.e. on Z a function h,(S,P,z). By Lemma 5.1, we
have [, h,(S,P,z)dn(z) = hu(S,P).

For z € Z set

F(z): = (hu(S,P,2) —log(r — 1)) - La(2).
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As h,(S,P,z) <logr, f(z) is a bounded measurable function on Z and

f(z)
1a(z) > log(-2)’

Note that
/ F(2)dn(z) = / ho(S, B, 2)dn(z) — n(A) - log(r — 1)
Z A

= [ hu(S B2 - [ hulSB2)in(a) - (4) loglr - 1
z Z\A
> hu(S,P) —n(Z \ A) -logr —n(A) -log(r —1) > 0.

By the Birkhoff ergodic theorem, - Sl £(Stz) converges a.e. to a function

f* € L*(n) and [, f*(2)dn(z) = [, f(z)dn(z) > 0.

Set R={z€ Z: f*(z) > 0}. Then one gets n(R) > 0. It is well known that
for any i € N, S, = ugi, for n-a.e. z € Z. By the Birkhoff ergodic theorem,
L5~ 114(S2) converges a.e. to a function 1,4* € L!(n).

m

Choose w € R with S*u, = psiy, S'P C B, for any i € Z and

. 1 “ i _ *
o T 2 145 = L47w)
and let
A={k€Zy: S*we A} :={a1 <az <},

where B, is the completion of B under p,. Put
V= {1 (AN B, (" (AN B)’,...,(x (AN B,)}.

Then I > V and we have the following Claim whose proof comes a little bit
later.

CLAM: h{S,V) > f*(w) > 0.
With this Claim finally, we have

1 1 1
he(T.U) 2 7he(S,U) 2 7he(8,V) 2 7" (w) > 0. W
Proof of Claim: For any G C X, and any cover £ = {E1, Es, ..., E;} of X, let

GﬂE:{GﬂEl,GnEg,...,GﬂEt}.
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Note that for any z € 7~ }(w), S%z € n71(A). Therefore, for any = €
7Y w),i € N, and any subset D of X, we have S%(z) € D if and only if
S%(z) € m~1(A)N D. Moreover, for any finite cover D of X and k € N, we have

k k
N(\/ §7%D, 77 w)) = N(\/ §7* (x7(4) N D),n " (w)).
i=1

1=1

Let V' = {r~Y(A) N By, 7 Y (A) N B,,...,x~1(A) N B, }. Since 71 (4) NV =
(r— 1)V and 771 (A)NP =V, we have

H(W)P1(8)) = log N(V)()) > log N(V)~4(S), 77} (@)
> log N(VE S7%V, 77! (w))
(where ag,, <m —1,a,, +1 > m)
= 1og N (VAn, 579 (r1(4) N V), 7~ ()
= log N (v, 572 ((r = DV'), 77 ()
> log N (VEm =9V 771(w)) — ki, - log(r — 1)
(by Lemma 3.3)
= log N(Vf;‘l.S"’“ (=1 (A) NP), 7Y (w)) — km - log(r = 1)
=log N(VF §7%4P 771 (w)) — kn, - log(r — 1).

Now, we estimate M(l) = log N(S™ PV ---V §74P n71(w)). Since for any
i €N, S'u, = psiy, we have Hy, (S™FP|C) = H,,_, (P|S*C), where C, S*C are
finite subalgebras of B,,, and k € Z . Thus,

M(m) =log #{(1,- -, j1) € {L,...,r}: 77 (w) N ("L, S™% B;,) # 0}
> log #{(j1,--»j1) € {1, -, 7} o (7~ (W) N (Nh, ™% By,)) > 0}

l
> Hy, (\/ S™P)
i=1

l l
=H, (S""P|\/ S%P)+ H, (\/ S™P)
=2 =2
1 !
= By (B S70B) 1 H, (\] 57P)

i=1 =2

{ l
> hy(S, P, 5%w) + Hy (\[ $7F) 2 ) hy(5,P, $%w).

=2 i=1
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Combining the above results, we have

Ko
H(WV)P1(S)) > Zhu(S P, $%w) — k, - log(r — 1)

= (hu(S,P, S'w) — log(r — 1)) - 14(S'w)

Therefore, one gets

he(S,V) = lim —H((V)’" 1(9))

m—-4o0o m

> lim LPelf(Siw) = fw).

m—+00 M

This ends the proof of Claim. |

Remark: Since

% _ - 1.
) —man:mmHZ“(S
) *
> Hm = f(S:z) = f(u:) >0
m—+oo m + 1 —o IOg(T_l) log(r—l)
and
. |An{0,1,2,...,m}| iy
i OGSl i Y s
:lA*(w)v

A is a subset of Z, with positive density.

Let Q(k) = S~ (z Y (A)NP) V.-V S~% (71 (A) NP) and |Q(k)| its cardi-
nality. From the proof of Claim, one has

log |Q(k)] > log N(Q(k), 7" (w)) = M (k)

k
> hu(S, P, S%w)
i=1
=k-log(r —1) + Z (S, B, S7w) — log(r — 1)) - 14(S7w)

7=0

=k-log(r —1) + ik:f(Sjw)

5=0
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Therefore,

1Q(k) > (r - l)kQZ;ig f(Siw)y _ = (r—1) 2}"15“” ko £( st)

Since
li (S7w >0
k——:r+noo ag Z f )
and
m—1
; i
kBToo(k/ak m!-lg}oo m Z IA S

there exist 1 > 0 and M € N such that for any £ > M,

IS~ (r A NPV VST (T A) NP > (r - 1)"25

Set D = n7Y(A) and S = {s;: s; = la;}. Then S is a subset of Z; with
positive density. Moreover, one has the following corollary, which will be used
to characterize the topological entropy n-tuples.

COROLLARY 5.6: Let (X,T) bea TDS and p € M(X,T) be an ergodic neasure
with h,(T) > 0. IfU; € B,, i =1,2,...,n with Ay (u) ([T, Ui) > 0, then there
exist a measurable partition P = {By, Ba, ..., B, } of X withr > n, a measurable
set D C X and a positive density subset S = {s1,82,...} of Z4 such that

(1) DnB,CclU;,i=1,2,...,n

(2) there exist h > 0 and M € N such that for any k > M,

T~ (DAB)VT=**(DAP) V- VT~ *(DNP)| > (r — 1)2*™.

Proof: The corollary now follows from the proof Theorem 5.5 and the above
Remark. (]

We may use the claim in the proof of Theorem 4.6 to prove a result stronger
than Theorem 5.5.

THEOREM 5.7: Let (Y,D,v,T) be a MDS. If U = {U1,Us,...,Up} (n > 2)isa
measurable cover of Y with h,(T,U) > 0, then h.(T,U) > 0.

Proof: Let P, be the Pinsker g-algebra of (Y, D,v,T). For any

s =(s(1),...,s(n)) € {0,1}",

set As = ()i, Ui(s(?)), where U;(0) = U; and Ui(1) = Y \ U;, and
a={As:s€{0,1}"}.
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By the claim in the proof of Theorem 4.6, there exists ¢ > 0 such that
H,(a|8V P,) < H,(a|P,) — ¢, for any finite measurable partition 8 which
is finer than i/ as a cover.

Since limp— 100 by (T", @) = H,(a|P,), there exists [ > 0 such that h,(T",a)
> H,(a|P,) —¢/2. Set S =T

Let n € N and 8 be a finite measurable partition with 8 > \/7"' S~l{. Since
S'8 is finer than U for i € {0,1,...,n — 1}, one has

n—1 n—1
H,(8|P,) = H, (ﬂ AY; s—iam) - H,,( \/ $7talBv P,,)
=0 1=0

n—1 n—1

> Hu< \/ s—iam) - S H,(a|S'BV P,)
1=0 =0
n—1

> 1,((/ 57alR) = (i alPs) - )

i=0
For each n € N, there exists a finite measurable partition 3,, finer than
V7=t §=ild, such that

n—1
H.(Ba|P.) < Hu(By) < logN( V s—iu>.

=0
Hence
he(S,U) = Tim Llog N n-ls-"u >l lHﬁp)
o(S,U) = lim ~log \_/0 > limsup = H, (Bn| P,
1 n—1 '
> lim sup = [H( V S"’a|Pl,) ~n(H,(a|P,) - e)]
n—oo T =0

=h,(S,a) — H,(a|P,) + € > €/2.
Thus, he(T,U) > 1he(S,U) > 0 and the proof is finished. [

6. The relations of topological and measure entropy n-tuples

Let (X,T) be a TDS. An n-topo (z;)7 is called intrinsic if z; # z; for i #
J. For n > 2, denote by E£(X,T) the set of intrinsic n-topo. It is easy to
see that E,(X,T), E;(X,T), and E¢(X,T) are invariant under the change of
coordinates in X (7).,

In this section, we shall prove that if y € M (X, T), then E,,(X,T) D E
for each n > 2 and there exists u € M(X,T) such that E,(X,T) =
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for each n > 2. Moreover, we shall show that a TDS with positive topological
entropy must have intrinsic n-topo and E,(X,T) = cl(E.(X,T)) \ An(X) for
each n > 2. First we prove

THEOREM 6.1: Let (X,T) be a TDS and p € M(X,T). Then for each n > 2,

En(X,T) 2 ER(X,T) = Supp(An(p)) \ An(X).

Proof: Let (x;)7_, € E#(X,T) and U be a finite open cover of X admissible
with respect to (z;);_,. It is easy to see that any finite measurable partition P,
finer than U/, is an admissible partition with respect to (z;);_,. Thus h,(T,P) >
0, since (z;)? € EX(X,T). By Theorem 5.5, hop(T,U) = ho(T,U) > 0. |

LEMMA 6.2: Let (X,T) be a TDS. If p € M(X,T) is ergodic, then for every
n> 2,
(ER (X, T)) \ An(X) D Supp(An(p)) \ Da(X)EL (X, T).

In particular, if hyop(T) > 0, then ES(X,T) # 0 for every n > 2.

Proof: Let B, be the completion of B(X) under p. Then (X,B,,u,T) is a
Lebesgue system.

If hy(T) = 0, one has Supp(An (1)) \ An(X) = EX(X,T) = 0.

We now assume h, (T') > 0. Let P, be the Plnsker o-algebra of (X, B, u, T).
Let 7 (X,B,,1,T) = (Z,Z,1,T) be the Pinsker factor of (X,B,,u,T) and
p = [, puzdn be the disintegration of p over (Z,7). By Lemma 5.4, ji, is non-
atomic for n-a.e. z € Z and hence

An(p)(Dn) = /Zuz X iz X o0 X py(Dp)dn(z) = 0.

Thus, Supp(A.(p)) \ An # 0. Since u is ergodic, 7 is a weakly mixing exten-
sion and A, (u) is ergodic. Thus (Supp(An(g)), T(™) is topologically transitive.
Since Supp(An (1)) is invariant under exchanging coordinates of X (™| for each
transitive point (2;)} of (Supp(An(s)), T™) we have z; # z; if i # j.

By Theorem 6.1, (z;)} € ES(X,T). Since cl(ES(X,T)) is a closed T(™-
invariant subset of X (™ one has cl(ES(X,T))\ An(X) D Supp(A (1)) \ An(X)
(= EXX.T). 8

We say that a partition PP is finer than a cover U when every atom of P is
contained in an element of U. The following lemma is Theorem 1 of [BGH].
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LEMMA 6.3: Let (X,T) be a TDS, and U an open cover of X. Then there
exists i € M(X,T) such that h,(T,P) > hyop(T,U) for all Borel partitions P
finer than U, i.e., h,(T,U) > hyop(T,U).

With the above preparation we now show

THEOREM 6.4: Let (X,T) be a TDS. Then there exists p € M(X,T) such that
En(X,T) = EX(X,T)(= Supp(Au(p)) \ An(X)) for each n > 2.

Proof: Let n > 2. First we have

CramM: For any point (2;)7 € E,(X,T) and any neighborhood U; of z;, there
exists v € M(X,T) with E{(X,T)N(Uy x Uy x --- x Uy,) # 0.

Proof of Claim: Without loss of generality, assume that U is a closed neighbor-
hood of z; such that U;NU; = Qif ; # zjand U; = Uj if z; = z;,1<i<j<n.
Let U = {Uf,Us,...,Ug}. Clearly, hyop(T,U) > 0. By Lemma 6.3, there exists
v € M(X,T) such that h, (T,P) > hyop(T,U) for all Borel partitions P finer than
U. By Lemma 4.3 one has A, (v)([];_; U;) > 0, i.e., Supp(A ( ﬂHl_ Ui #0.
As [Ty Ui N Ap(X) = 0, one has EX(X,TYN (Uy x Uy x - Up) # 0 by
Theorem 4.4. This ends the proof of the claim.
By the claim, we can choose a dense sequence of points

(@2, 2™ m > 1}
in E,(X,T) with (7", z%,...,2™) € EZ"'" X,T) for some v € M(X,T).
1 2 n n

Let
1
k= Z2’n 1<Z 2mV"T)'

m=1

Since for any measurable partition @ of X, n > 2 and m € N,

h(T,@) > ————h, (T, q),

- 9m+n—1

therefore Ey* (X,T) C E(X,T). In particular, (7, 23, ..., 2™) € EX(X,T).
Moreover,

Ep(X,T) D {(eT, &, ..., a)ym > 1}\ An(X) = Eo(X, T),

that is, B(X,T) = Eo(X,T). W
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THEOREM 6.5: Let (X,T) be a TDS. Then for eachn > 2,
En(X,T) = cl(ER(X,T)) \ An(X).

Proof: By Theorem 6.4, there exists ¢ € M(X,T) such that E,(X,T) =
E#(X,T) for each n > 2. Let p = [, pr,dm(w) be the ergodic decomposition.
By Theorem 4.9, for an appropriate choice of (2,

A {E (X, T): w € Q})\ &n = EX(X,T).

Now for each w € Q, E¥(X,T) C cl(EE(X,T)) by Lemma 6.2. Therefore,
E.(X,T) C cl(EE(X,T)). As cl(EE(X,T)) C E|(X,T) C Eo(X,T)U An(X),
one has E,(X,T) = c{E(X,T)) \ An(X). |

To end the section we give a characterization of n-topo. Let (X, T) be a TDS
and P = {4,, As,...,A,} be a measurable partition of X. We say that P is
topological non-trivial, if cl(4;) # X foreach 1 <i < n.

LEMMA 6.6: Let (X,T) be a TDS and p € M(X,T). Then E¥(X,T) =
X™ \ A,(X) if and only if for any topological non-trivial measurable
partition PP of X by n sets, one has h,(T,P) > 0, where n > 2.

Proof: Let EX(X,T) = X(™\ A,(X). For any topological non-trivial measur-
able partition P = {A;, Ag,..., A, } of X, choose z; € X \cl(4;),1=1,2,...1
Clearly, (z;)} € X \ A,(X) and P is an admissible partition with respect to
(zi)7. Thus h,(T,P) > 0.

Conversely, assume for any topological non-trivial measurable partition P of
X by n sets that one has h,(T,P) > 0. Let (z;)} € X(™ \ A (X). For any
admissible partition P = {4, As, ..., A, } with respect to (z;)}, P is topological
non-trivial. Thus h,(T,P) > 0. Tlns shows (z;)7 € EX(X,T). ]

THEOREM 6.7: Let (X,T) be a TDS and n > 2. Then
(1) (X,T) has u.p.e. of order n if and only if there is p € M(X,T) such that
for any topological non-trivial measurable partition P of X by n sets, one
has h,(T,P) > 0.
(2) (X,T) has u.p.e. of all orders if and only if there is p € M(X,T) such
that for any topological non-trivial measurable partition P of X by finite
sets, one has h,(T,P) > 0.

Proof: 1t is a direct consequence of Theorem 6.4 and Lemma 6.6. L |
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7. A theorem on weak disjointness

In the section, we shall show that u.p.e. of order 2 systems is weakly disjoint from
any transitive system, and while doing this, we give another characterization for
u.p.e. of order n or u.p.e. of all order systems. First, we need a combinatorial
lemma, the idea of whose proof is in Proposition 8.2 [W1]; see also [S].

LEMMA 7.1: Let r > 2. For every h > 0, there exist b(h) > 0 and M, € N
such that if m > My, and B C {1,2,...,r}™ satisfies |B| > (r — 1)™2™"  then
we can find Jp, C {1,2,...,m} with || > b(h)m and B|;,, = {1,2,...,r},

i.e., for any s € {1,2,... ,r}‘]’" there is b € B with b(j) = s(j) for j € Jpp.

Definition 7.2: Let (X,T) be a topological dynamical system.

(1) Nonempty subsets Uy, Us,...,U, of X have Property P,, if there exist
b > 0 and M, € N such that for any natural number m > M,, we can
find Jy, C {1,2,...,m} with [Jn,| > bm, and J,, satisfies that for any
se{1,2,. ..,n}J"‘, there exists ¢ € X with z € Njes,, T~Uy ).

(2) (X,T) is said to have Property P, if any nonempty open subsets
Ui, Us, ..., Uy of X have Property P,. (X,T) is said to have strong
property P if it has property P, for every n > 2.

THEOREM 7.3: Let (X,T) be a TDS and (z;)} € An(X) with n > 2. Then
(z;)7 € En(X,T) if and only if for any neighborhood Uy x Us x - - - x U, of (x)?,
Ur,Us, ..., Uy have Property P,.

Proof: For any (y;)7* € X™\ A,,, with m > 2, assume that {vi,92,- -, ym} =
{z1,29,...,zp} and z; # z; for 1 <i < j < n. Tt is clear n > 2. Note that
(4i)i € En(X,T) if and only if (z;)} € E,(X,T), and for any neighborhood V;
of yi, V1,V2,..., Vi, have Property Py, if and only if for any neighborhood U;
of z;, Uy, Us,. .., Uy have Property P,.

Thus, we may assume that z; # «; for 1 <i < j <n. Let (z;)} € E,(X,T)
and U; be a neighborhood of z; with U; NU; = 0, i # j. By Theorem 6.4, there
exists v € M(X,T) with (z;)7 € Supp(An(v)). Hence A, (v)(II2,U;) > 0. By
Corollary 4.7, h, (T, {U¢,US, ..., US}) > 0.

By Lemma 4.8, there exists an ergodic measure . with hy, (T,{Uf, U5, ...,Uc})
> 0, ie., A\p(u)([Ti2; Us) > 0. By Corollary 5.6, we know that there exist a
measurable partition P = {By, B,,...,B,} of X, D C X and a positive density
subset A = {n1,ny,...} of Nsuch that DN B; C U;,i =1,2,...,n and

IT™(DNB)VT™"(DNP)V--- VT ™(DAP)| > 2 (r — 1)
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for each large enough k € N, where h is a positive constant.

By Lemma 7.1, there exist b(h) > 0 and Mp € N such that for every nat-
ural number & > My, we can find Ji C {1,2,...,k} with |Jx| > b(h)k and
Ve, T7H(DNOP)| = rl7el,

Now, let R = {U;,Us,...,Un}. As DN B; C U;, i = 1,2,...,n, one gets
IV es, TTMR| = nlkl. Set 6 = limm 100 351{1,2,...,m} N A| > 0. There
exists M € N such that for any m > M we have 1{{1,2,...,m} N A] > 6/2.
Set b = 8b(h)/2, My = max{M,2M/é} and, for each m > M, set kn,, =
max{j € N:n; < m}. Then kn, > $m > M. Let I, = {n; : j € Ji, }. Then
one gets

m

I, c{L2,....m}, |In|=|Jk.|>

b(h)knm > b

and |V;e; T7'R| =nlll ie, for any s € {1,2,.. .,n}™ there exists 7 € X
with z € V;e; T~*Us(yy. Therefore, Uy, Us,. .., Uy, have Property P,.

Conversely, let U; be a closed mutually disjoint neighborhood of z;, i =
1,2,...,n. Since U; is a neighborhood of z;, Uy, Us,..., Uy have Property F,,
i.e., there exist b > 0 and M, € N such that for each m > Mj, we can find J,,, C
{1,2,...,m} with |J,,| > bm, and J,, satisfies that for any s € {1,2,...,n}"™,
there exists T; € ﬂJeJH “I(Uyj))- Let Xs = {z,:5€{1,2,. ,n}J} Note
that for every t € {1,2,. ..,n}J’", we have [(V,c; T~ JUt(] NXs| = (n~1)ml,
Combining this fact and |Xs| = nl/=|, one gets

v( Vo) s ()™

J€Jm

where U = {Uf,Us,...,Us}. Thus
H( T—iu) > |l log (——) > bmlog (——).
v (227 2

Hence
1
htop(T,U) = ml—lyr-l{-loo m—'——H(u \% T_lu VeV T_mU)

1 n
J
> llnnnf, ( \/ T™ U) > blog( 1) > 0.

JeJm

This shows that (z;)} € En(X,T). ]

An immediate consequence of Theorem 7.3 is
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THEOREM 7.4: Let (X,T) be a topological dynamical system.
(i) (X,T) is u.p.e. of order n if and only if (X,T) has Property P,, where
n>2.
(i) (X,T) is u.p.e. of all orders if and only if (X,T) has strong Property P.

For a TDS (X,T), ¢ € X and a pair of non-empty open subsets U,V of X, let
N, U)={n€Zi:T"(z) eU}and NU,V)={n€Zy : UNT ™V) # 0}.
For B C Nand k € N, we define B+ k = {b+ k : b € B}. Note that two TDSs
are weakly disjoint if their product is transitive.

THEOREM 7.5: If a TDS (X, T) has u.p.e. of order 2, then it is weakly disjoint
from any transitive system.

Proof: Let (Y,S) be a transitive system. Assume that U;,Us and Vi, V, are
non-empty open subsets of X and Y, respectively. Then

NU; x WV, Uy x Vo) = {n € Zy : (T x S) " (Uy x Vo) N (U1 x V1) # B}

As (Y, S) is transitive, there are ng € N such that V = S™™(\,)nV; is a
non-empty open subset of Y. Thus

N(Uy x V1,Uz x Va)
={n€Z;: (T7"(U2) NU1) x (S7™(V2) V1) # 0}
D{me€Zy : (T™™T ™U))NTL) x (ST™(V)NV) # 8} + no.
Let Dy = Uy and Dy = T~"(U,). Then
N(U, xV1,Us x V3) D N(Do x V,D; x V) + ng.

Now, it remains to show N(DoxV, Dy x V) # 0. As (Y, S) is transitive and V
is nonempty, N(V,V) = N(z,V) ~ N(z,V) contains an IP-set, i.e., there exists
a sequence pi,ps,... € N such that finite sums p;, + p;, +--- +pi, € N(V,V)
for each iy < 42 < --- < i, see Theorem 2.17 in [F}, where z is a transitive
pointinVand A—A={a—-b>0:a,b€ A}.

As Dy, Dy have Property P», there exist b > 0 and M} € N such that for each
m > My, we can find J,, C {1,2,...,m} with |J,z| > bm, and Jp, satisfies that
for any s € {0, l}J’" there exists =5 € ()¢, T=3(Dy(j).

Choose M € N with Mb > 1 and assume m > max{M,, (p1+p2+---+pum)/b}.
If Jm, I+ 01, Jm +(P1+Dp2),s ...y I+ (P1 + P2+ - - +pu) are pairwise disjoint,
then

M

[T U T + 01+ P2+ -+ )| = (M +1)|Jm| > (M +1)bm.
j=1
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Since
M

Im U U Jm+(P1+p2+-"+pj)
Jj=1
c{l,....mm+1,....m+(p1+--+pum},
we have (M + )bm <m+ (p1 +po+ -+ pm). Asbm >py +p2+ - +pu
and Mb > 1, this is impossible. Thus there exist 1 < s; < 89 < M such that
I N (Jm + B34, pj) # (. Thus, we can find j;,j2 € Jn, with j; —jo = Z?:slpa*
Let s € {0, 1} with s(j) = 1if j = j1 and 0 otherwise. As (Y, T~(Ds(5)
# 0, one gets T~91(D;) NT~92(Dgy) # 0, that is, Do NT~1=72)(D,) # §. Thus

82
> i € N(Do, D1) N N(V,V) = N(Do x V, Dy x V).

j=s1

This ends the proof of Theorem 7.5. |

8. Other characterizations and applications

In this section we will give some other characterizations of positive entropy,
u.p.e. of order n and all orders. We first show

THEOREM 8.1: Let (X,T) and (Y, S) be TDS.
(i) If (X,T) and (Y, S) have u.p.e. of order n, so does (X x Y, T x S), where
n>2.
(ii) If (X,T) and (Y, S) have u.p.e. of all orders, so does (X x Y,T x S).

Proof: (ii) follows from (i) and it remains to show (i). By Theorem 6.4 and The-
orem 4.4, there exist p € M(X,T) and v € M(Y, S) such that Supp(A.{(u)) =
X™ and Supp(\,(v)) = Y(™. Let P, (resp. P,) be the Pinsker o-algebra of
(X,B(X),p,T) (resp. (Y,B(Y),r,S)). It is known that P, x P, is the Pinsker
o-algebra of (X x Y, B(X xY),u x v,T x S) (see Theorem 14 of [P]).

For any open sets U; and V; of X and Y,7=1,2,...,n,

An(p X V)(in[lUi X Vi> = /)(XY,I::ﬁl]E(lUiXVilpu X P,)dp x v
-/ EEammw / i[lmummdu
- An(u)(ilf[lm) -An(u>(£11w) >0,
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since both A (u)([Te, Us) and An()([T, Vi) are positive. It follows that
Supp(An(pp x 1)) = (X x Y) " e, (X xY,T % S) has u.p.e. of order n. |

We shall say that a subset B of N is interpolating with respect to sub-

sets {U;}L, if for any s € {1,2,...,n}B there exists z, € X with z, €
ﬂjeB T™Uy)
THEOREM 8.2: Let (X,T) be a TDS and ()} & An(X) withn > 2. Then
(z;)} € En(X,T) if and only if for any € > 0 there exists a positive density
subset A of N such that for any s € {1,2,. ..,n}A, we can find zy; € X with
d(Txs,x4(5)) < € for all a € A.

Proof: (1) Let (z;)} € E,(X,T). For any € > 0, set
Ui={zx e X :d(z,z;) <e/2} fori=1,2,...,n

By Theorem 7.3, Uy, Us,...,U, have Property P, i.e., there exists b > 0 and
M, € N such that for any m > M,, we can find J,, C {1,2,...,m} with
[Jm| > bm, and J,, satisfies that for any s € {1,2,.. .,n}J’“ there exists z, € X
with 25 € ey, T Ug)-

Now let

F = {B C N: B is interpolating with respect to {U;}i=,}.
As J,, € F for m > M,, F is nonempty. Set
F(X) = {y € {0,1}": 3B € F such that y(j) = 1 if and only if j € B}

and let o: {0, 1}N — {0,1}N be the shift map.

As Uy, U,,...,U, are closed, it is easy to see that F(X) is closed and o-
invariant, i.e., (F(X),0) is a subshift. For each m > M,, take y,, € F(X) with
ym(j) = 1 if and only if § € J,,. Assume p,, = 7—;—2;’;_0150;% for m > M, and
let @ = lim;— 400 ttm, be a limit point of {um,} in the weak*~topology. Clearly,
4 is a o-invariant measure.

Note that p([1]) = limisyeo fim; ((1]) > liminfisyoo(|Jm;|/mi) > b, where
1] = {y € F(X): y(1) = 1}. By the ergodic decomposition we know that
there exists an ergodic measure v of (F(X),o) with v([1]) > p([1]). Let z €
F(X) be a generic point of v, i.e., limpy_ico a—lﬁzﬁﬁl%iz =v. Set A =
{ € N: z(j) = 1}. Then A is interpolating with respect to {U;};_, and
A is a positive density subset of N, since limm 400 S]A N {1,2,...,m}| =
limyp s 400 mEm 150 (1) = v({1]).
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Now, for any s€{1,2,..., n}A, there exists 5 € X with @5 € Ny 4 T Us(a)s
since A is interpolating with respect to {U;};;. Thus T%z; € Uy(q) foralla € A.
Hence d(Tzs, 25(q)) < € for all a € A.

(2) Conversely, assume for any € > 0 there exists a positive density subset A of
N such that for any s € {1,2,... ,n}A, we can find z; € X with d(T%z,, 25(,)) <
e for all a € A. We shall show that (z;)7 € En(X,T).

For any neighborhood U; of z;, take ¢; > 0 with B, (z;) C U;, i =1,2,...,n.
Thus there exists a positive density subset .4 of N such that for any s €
{1,2,... ,n}A, one finds z; € X with d(T2s,24,)) < € for all a € A.

Let b’ = lim;—y 00 %]Aﬂ {1,2,...,m}| and b = ¥'/2. Then b > 0 and there
exists My > 0 with AN {1,2,...,m}| > bm for all m > M,,.

Now, for any m > My set J,, = AN{1,2,...,m}. Clearly, [Jm| > bm. For
any s € {1,2,. ..,n}""', let

iy }sla) faedy,
S(“)‘{1 ifagJm

for all a € A. For ¢’ € {1,2,... ,n}A, there exists o € X with d(T*zy,Te(q))
< ¢ for alla € A. In particular, for a € J,, we have T*zy € Be, (Z5(a)) C Us(a)-
Therefore 25 € (e, T~ 9Us(q)- This shows that Uy, Us, . . ., Uy have Property
P,,. This implies that (z;)} € E,(X,T). ]

THEOREM 8.3: Let (X,T) be a topological dynamical system and n > 2.

(i) (X,T) has u.p.e. of order n if and only if, for any ¢ > 0 and {z1,%2,...,Tn}
C X, there exists a positive density subset A of N such that for any
s € {1,2,...,n}A, we can find z, € X with d(T%rs,74,)) < € for all
a€ A

(ii) (X,T) has u.p.e. of all orders if and only if, for any € > 0, there exists a
positive density subset A of N such that for any {z,},c 4 C X, we can
find x € X with d(T°z,z,) < € for alla € A.

Proof: Without loss of generality we assume that (X,T) is not trivial. (i)
follows from Theorem 8.2. Now we prove (ii). As the sufficiency follows from
(i) it remains to show the necessity.

Let (X,T) have u.p.e. of all orders. For any ¢ > 0, there exist ¥ > 2 and
{yi}le C X such that Ule Beja(yi) = X and (y1,92, -+, yx) & Di(X)-

As (X,T) has w.p.e. of order k, (y1,y2,...,yx) € Ex(X,T). By Theorem 8.2,
there exists a positive density subset .4 of N such that for any s € {1,2,..., k}A,
we can find z, € X with d(T*zs, ys(a)) < €/2 for all a € A.
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Now, assume {z,},cq4 C X. As Ule B/3(yi) = X, there exists i(a) €
{1,2,...,k} such that 2, € B,/2(yi(a)) for every a € A. Let s € {1,2,...,k}A
with s(a) = i(a). Then there exists x5 € X such that d(T%z, ys(q)) < €/2 for all
a € A. Asz, € B/2(Ys(a)), one has d(Txs, z4) < d(T2s,Ys(a)) +A(Ys(a)> Ta) <
eforall a € A. ]

THEOREM 8.4: Let (X, T) be a topological dynamical system and n > 2. Then
(i) (X,T) has u.p.e. of order n if and only if (2X,T) has u.p.e. of order n.
(ii) (X,T) has u.p.e. of all orders if and only if (2X,T) has u.p.e. of all orders.

Proof: Tt is enough to prove (i). Let d be a metric of X and Hy be the Hausdorff
metric of 2%.

First let (2%,T) have u.p.e. of order n. For any € > 0 and {71,22,...,2,} C
X, set A; = {z;}. By Theorem 8.3, there exists a positive density subset
A of N such that for any s € {1,2,. ..,n}A, we can find 4, € 2% with
Hy(T®As, Aga)) < e for all a € A. For any z, € A,, we have d(T%z;, T4(,)) < €
for all @ € A. By Theorem 8.2, (X, T) has u.p.e. of order n.

Conversely, let (X,T) have u.p.e. of order n. For any € > 0 and

{A1,A2,...,An} C 2X,

there exists M € N such that we can find B; = {zi,7},...,7%,} C X with
Hy(B;, A;) < e/2fori=1,2---,n. By Theorem 8.1, (X(™) T(M)) has u.p.e. of
order n. Let dps be a metric of XM) with dp (21, %2, ..., 28m), (Y1, Y2, - - -, Ynr))
= maxy<i<m d(Ti, ¥s).

By Theorem 8.3, there exists a positive density subset A of N such that for
any s € {1,2,...,n}", we can find (25,23, ..,75) € XM with

A (T (5, 25, 15,), (@5, 25 25y < /2

for all a € A.

Put A, = {zf,x5,...,23,}. It is easy to see Hq(T*As, Bs(a)) < €/2 for all
a € A. Moreover, Hy(T*A;, Aya)) < € for all a € A. This implies that (2%, 1)
has u.p.e. of order n by Theorem 8.3. |

Now we give a characterization of positive entropy, which was proved by
Glasner and Weiss [GW4] when X is a sub-shift and k = 2.

THEOREM 8.5: Let (X,T) be a TDS and k > 2. Then hyp(T) > 0 if and only
if there exist k disjoint closed subsets By, Ba, ..., By of X and an interpolating
set of positive density with respect to {By, Ba,...,B}.
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Proof: It remains to show the necessity.

Let hiop(T') > 0. Then Ef(X,T) # 0 by Lemma 6.2. Take (x1,%3,...,2;) €
Ef(X,T). Since z; # z; for 1 < ¢ < j < k, there exists ¢ > 0 such that
BiNnB; =0 forl <i<j <k, where B; = {z € X : d(z,z;) < €} for
each 1 < i < k. Now by Theorem 8.2, it is easy to see that there exists an
interpolating set of positive density with respect to {B, Bs, ..., By} [ |

9. u.p.e. examples

Let X be a compact metric space and T: X — X be continuous and surjective.
For n > 2 we may define u.p.e. of order n in the same way. It is easy to see
(X,T) has u.p.e. of order n if and only if its natural extension has u.p.e. of order
n. Thus in this section we consider continuous surjective maps.

For p > 2 let A = {0,1,...,p — 1} with discrete topology, ¥ = AN with
the product topology and o: ¥ — X be the shift. For n > 2 and a =
(a1,a9,...,a,) € A™ (a block of length n), let |a| = n, o(a) = (az,...,a,) and
P(a) = (a2,...,an,a;1). We say a appears in ¢ = (z1,72,...) € Zor z € A™
with m > n if there is j € N with a = (2,Z;41,...,%j4n—1) (write a < z for
short) and we use t* to denote t---t (i times). For b = (by,...,bn) € A™, let
ab=(ai,...,an,b1,...,b) EA™™™ For X CTand AC X,let A=X\A4
and

lat,...,an] ={y € X: (Y1,...,yn) = (a1,-..,a4)}.
For an open cover U of X let U{L:_Ol =UVo UV Vo DY and N(U) be

the minimal cardinality of subcovers of ¢/. For K C A™ we say K covers X if
U= {Uo, U1, ey Up_l} and

X = U U, ﬂo_th n...na—(n—l)Uin_P
(10, erin—1)€K

Moreover, each k € K is called a #-name of length n.

Definition 9.1: Let (X, T) be a TDS and Uy, U; are two non-empty open subsets
of X. We say (X, T) has Property P with respect to Uy, Uy if thereis N > 0
such that whenever k > 2, whenever s = (s(1),...,s(k)) € {0,1}, there exists
y€ X withy € Us(l): .. ,T(’“‘I)N(y) € Us(k)-

The following lemma is basically Proposition 3 of [B1].
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LEMMA 9.2: Assume that (X,T) has Property P with respect to Uy, U; and
UgnNUy =0. If R = {U,V} is an open cover of X with Uy C U¢ and U; C V¢,
then hyop (T, R) > 0.

Proof: As (X,T) has Property P with respect to Uy, Uy, there is N > 0 such
that whenever k > 2, whenever s = (s(1),...,s(k)) € {0,1}*, there exists
z(s) € X with

z(s) € Us(l),...,T(k_l)N(z(S)) € Us(ry-

Thus, if s and s’ are two different elements of {0,1}*, since Uy C U¢ and
Uy C V¢, the two points z(s) and z(s’) cannot be in the same elements of the
cover RMV™1 Hence N(RZN™1) > 27, and hyop (T, R) > + log 2. [ |

LEMMA 9.3: Let (X,T) be a TDS with a transitive point x. Then T has u.p.e.
if and only if for each i € N, (z,T"(z)) € E2(X,T).

Proof: Assume that for each i € N, (z,T%(x)) € E2(X,T). As z is a transitive
point we have {z} x X C Ex(X,T). Since Eo(X,T) is T x T invariant we have
Orb(z) x X C Ex. Thus E5(X,T) = X x X. n

We will construct a transitive subshift (X,o) of (£,0) such that z =
(21,x2,...) is a transitive point of (X, o) and satisfies

1. (z,0%(z)) € E2(X,T) for each i € N,

2. U = {[1]5,[2]%, [3]¢} has zero entropy.

More precisely, we will show

THEOREM 9.4: There is a TDS which is u.p.e. of order 2 and not u.p.e. of order
3.

Proof: Let ¢: N — N such that (6(1),4(2),...) =(1,1,2,1,2,3,1,2,3,4,...).
Set A; = (00123000), 7y = |4;| and Uy = {A;,0%(D(4,)0¢(D}.
Let C§ = A;0™ = Ay1)0™) and Cl= 0(A1)010"10¢2(1)(A¢(1))()¢2(1)0"¢<”.
Assume

1 1 1 1 1 1 — 1 1\n
{DID Dn1+1"'D2n17"'7Dn12”1—n1+1"'Dn12"l}_' {00701} 1’

where D} € {C;,C1}. Set

Ay = A, 0™ D] . "D}HD:“H . "D%nl ...1)11112"1_nl+1 . "D71L12"1’
ny = |As| and Up = {Az,0%®(4,)0°@},
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If Ay,...,A; and Uy, ... ,U; are defined we let
Ck = Ayy0™® and Cf = a‘i’z(k)(AdJ(k))0¢2(’°)0n¢m.
Assume

k k k k k k - k ~kyn
{Dl"‘D an+1"'D2nk7""an2"k—nk+1"'an2"k-}_{COaCI} k.

ng?

Set

_ nx Nk kE pk k k .. Dk
Ak+1 = A0 kD1 "'anan+1 "'Dzn,c "'an2"k —ng+1" anrk,

Ng+1 = IAk+1| and uk+1 = {A}H_],0’¢(k+1)(Ak+1)0¢(k+1)}.

It is clear that ngy1 = 2ng + 2ng(kyne2™ = 2nk(L 4+ ng 2™).

Let = lim Ay and X = w(z,0). We claim that (X, o) is the system we need.

First we show (X, o) has u.p.e. To do this we need to prove that (z,0(z)) €
Ey(X,T) for each i € N.

Fix i € N. Suppose that U is a neighborhood of x and V is a neighborhood of
o'(z). By the definition of ¢, there is k such that ¢(k) =i and Uy = [4x] C U
and Vy = [0'A;0!] C V. Note that A # o*Ax0¢. Thus Uy NVy = @, and
consequently Vo C U§ and Uy C V. It is clear that Uy, = {Ag, ¢ A;0}.

There are infinitely many j such that ¢(j) = k. Thus,

Cl = A0™ and C] =o' AL00™,
and

.D?

s
n;2"7

Ajy = A 05D 'Dii,»Df{,-H . ..D%n]_ "'D:.L]-2"J‘—n,-+1 .
such that D{_Hnj “'D{z+1)n,- € {CI,CIYY for 1 =0,1,...,2% — 1.

Set V = {U§,V¢}. It is easy to see that (X, o) has Property P with respect
to Up, Vo. By Lemma 9.2, we have hyp(0,V) > 0 (let N = 2n;) and conse-
quently hyop(o, {U,V}) > 0 as {U,V} is finer than {U§,V{}. This proves that
(z,0%(z)) € E2(X,0) and hence (X,0) has u.p.e. according to Lemma 9.3.

Now we show that U = {[1]¢, [2]¢,[3]°} has zero entropy.

Let n €N, then X ={ye X :y €[z, j4n-1],J € N} as z is a transitive
point. For {ig,...,in—1} € {1,2,3}" let

a(io, . ain—l) = [io]c N 0_-«1[i1]c n---N U_(n_l)[in_llc.
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It is easy to see that {y1,...,yn) C alig,...,in—1) if and only if Yi+1 € [i5]°
for0<j<n-1and

NUg™) =min{|K[: K C {1,2,3}"and (]  alio,...,in-1) = X}.
v 10,0 yin—1€K

As

for each 7,5 € {0,1,2,3} there is k € {1,2,3} such that [i} U[j] C [k)°. Thus
if @ = (a1,...,a,),0 = (by,...,0,) € {0,1,2,3}" there is ¢ = (cy,...,c,) €
{1,2,3}" with

la1,...,q,]Ub1,...,b,) Cafa,...,cp).

Now fix k € N. For each i < k, choose (ct,...,c% ) € {1,2,3}™ such that

(4] U[e?D 4,0°0) € alch, ..., ¢ ).

s Cn;
Then we claim that X is covered by the following I/-names of length ny,

PI(ylse 1),

(ljy{,..‘,yirj),

@51 oyn 1), 1<i<k and 1<j5<m,
if we write

(et e 1™)™#™) = (i, o9p,), 1Si<k-1 and
(nth) = @h, . uh).

In fact, if a is a block of length ny and appears in z, then there is j > k such
that a appears in A;. Hence by induction on j > k it is easy to show the claim.
Thus

k
NPT <Y dme < kg < 4(ng)?.
1

j
This clearly implies that hop(o,U) = 0. |
A diagonal system is one such that £»(X,T) contains
Al ={(y,Ty):y € X}.

Note that u.p.e. implies diagonal. It is shown in [B2] that a diagonal system
is disjoint from all minimal systems with zero entropy. Using the idea in the
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proof of Theorem 9.4, we get a transitive diagonal system without u.p.e., and
hence answer a question of [B2] affirmatively. More precisely, we will construct
a transitive subshift (X,0) of (£,0) such that x = (x1,23,...) is a transitive
point of (X, o) and satisfies

1. (z,0(x)) € E2(X,T),

2. (z,02%(z)) ¢ Eo( X, T).

If this is the case, then (0%(z),0"t1(z)) € Eo(X,T) foreach i € N. As z is a
transitive point, for each y € X one has (y,o(y)) € E2(X,T). Moreover, (X, o)
does not have u.p.e., as (r,0%(z)) & Eo(X,T).

THEOREM 9.5: There is a transitive TDS which is diagonal and does not have
u.p.e.

Proof: Let ¢: N = N such that (¢(1), ¢(2),...) =(1,1,2,1,2,3,1,2,3,4,...).
Set A; = (1020), ny = |A1| and Uy = {Al,O'(Al)O}. Let Cé = A;0™ and
C! = o(A,)00™. Assume

1 1 1 1 1 1 — 1 Inn
{Dl . "Dnanl-{»l ! ..D2TL1" M ’Dn12"1——-n1+1 o ‘Dn12"1} - {CO’CI} t.

Set

A = AlOnlD% B 'D7111D7111+1 o D%nl " 'D71112"1—n1+1 o 'D71112"1’
ng = |Az| and Uz = {A2,0(A2)0}.

If Ay,..., A and Uy, ..., U, are defined, we let
Ch = Ag(ry0™¢®  and Ch = a(Agr))00™®,
Assume
{Df a ‘Dﬁk’DﬁkH e 'Dgnk)"'vD:,kT‘k—nk-l—l -"Dﬁm} = {C(’)gacf}n'“-

Set

Ak+1 = AkonkDf T DﬁkDﬁkH '“Dgnk '”thk2“k—nk+l v 'DﬁkT‘k?
N1 = [Agr1} and Upyr = {Agy1,0(Ars1)0}
It is clear that ngi1 = 2ng + 2ngyne2™ = 2ng(1 + ngr)2™).

Let z = lim A; and X = w(z,0) C {0, 1,2}Z+. We claim that (X, o) is the
system we need.
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First we will show that &/ = {[1]°,[2]°} has zero entropy, and hence (X,0)
does not have u.p.e. Let n € N, then X ={y € X:y € [z; -+ Zj4n-1],] € N}
as « is a transitive point. For {éo,...,in—1} € {1,2}" let

afig, .. in-1) = [ig] N i) N--- N~ V[, _]°.

It is easy to see that [y1,...,yn] C alio,...,in—1) if and only if y;41 € [§;]°
for0<j<n-1and

Nug™) =min{|K: K c {1,2}"and  |J alio,...,in-1) = X}.
i0,seeerin—1€K
By the construction of A;, it is not hard to see that (12) £ A; and (21) £ A;
for any ¢ € N. As [1]° = [0] U [2], [2]¢ = [0] U [1], for each i € N there exists
(ch,...,ch,) € {1,2}™ such that [A;] U[0(A4:)0] C a(ct,...,ck,). Similar to the
proof of Theorem 9.4 one has h¢op(o,U) = 0.

Now following the proof of Theorem 9.4, we can show that (z,0(z)) €
E»(X,T). This ends the proof. |

It is easy to see that in Theorem 9.4 the set of periodic points in X is dense as
for each k and j < ny41/2nk, (4;,0™)7 appears in 2. Thus, there is an invariant
measure with full support on X. This of course is also the consequence of the
general result: each u.p.e. has an invariant measure with full support [B1].

The following theorem obtained by some modification of the construction of
Theorem 9.4 answers a question of [B1, Question 2] negatively. Note that Weiss
[W2] has an example which is transitive and has an invariant measure with full
support, but there is no ergodic measure with full support.

THEOREM 9.6: There is a TDS which is u.p.e. and there is no ergodic invariant
measure with full support.

Proof: Instead of A1 in the construction of Theorem 9.4, we put By;. Take
By = (1020); we set

_ mF nk k nk k k k mb
Byy1 = B0 ‘D1"'anan+1"‘D “‘D(zﬂk—1)nk+1"'Dzﬂknko 2,

an
N1 = |Bisr| and  Upqr = {Bipr, o+ (Byyy )00+,

where m§ > ng(n22™ + ny) and m§ > nym?b.

Set y = lim By, and Y = w(y,0). (Y,0) is also a system satisfying Theorem
9.4. Moreover, the set of periodic points of Y is dense in ¥ and Y has an
invariant measure with full support. We now show that there is no ergodic
measure on Y with full support.
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Assume that g is an ergodic invariant measure with full support. Let z be a
generic point of g. Then z is also a transitive point of (Y, 0) and we have

n—1

1 ,
E Z 1[31]0'2(2) - /1[31](1;1, = N[Bﬂ >0,
=0

as 1(p,) is a continuous map from Y to R.
Let N(By,C) be the number of times that B; appears in C. Then there is kq
such that if k > kg, we have
1 sl . 2 N(By,B 1
— I[BI]U’(z) > — and —M < —.
L Ny ng Ny
By induction, we can show that for & > kg, if z = (21,2s,...) and C} =
(21,.-.,2n,) then Cy only appears in

mi i i i i i mi
0 ’Dl"'DmDm+1"‘D2n.-"'D(zni—l)n,-+1"' 2””50 2,

for i € N with ¢(:) < ko.
This implies that z is not a transitive point, a contradiction. Hence there is
no ergodic measure with full support. |

Finally, we have

QUESTION 1: Is there a u.p.e. of order 2 system having an ergodic, even strongly
mixing invariant measure with full support but not u.p.e. of all orders?

QUESTION 2: Let (Y, D,v,T) be a Lebesgue system and U be a finite measurable
cover of X. Do we have h.(T,U) > h,(T,U)?
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